Advertisement

JOM

, Volume 67, Issue 8, pp 1896–1904 | Cite as

Dielectric and Ferroelectric Behavior of Bismuth-Doped Barium Titanate Ceramic Prepared by Microwave Sintering

  • A. Mahapatra
  • S. Parida
  • S. Sarangi
  • T. Badapanda
Article

Abstract

Bismuth-doped barium titanate ceramics with the general formula Ba1−x Bi2x/3TiO3 (x = 0.0, 0.01, 0.025, 0.05) have been prepared by the solid state reaction technique. The phase formation and structural property of all compositions have been studied by x-ray diffraction (XRD) pattern and Rietveld refinement. XRD pattern reports the single phase tetragonal crystal system with space group of P4mm. All compositions have been sintered at 1100°C in a microwave furnace for 30 min. The variation of dielectric constant with respect to temperature and frequency was studied and it was found that the dielectric constant decreases whereas transition temperature increased with the increase in Bi content. The diffusivity parameter was calculated by the modified Curie–Weiss law and the diffusivity increased with the increase in Bi content. The ferroelectric property was studied by the P–E hysteresis loop and it was observed that the saturation polarization decreased, but the coercive field increased with Bi content. The optical band gap was calculated from UV–Visible spectroscopy and found to decrease with Bi content.

Keywords

Barium Titanate Microwave Sinter Barium Titanate Urbach Energy Dielectric Constant Decrease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    S. Fujishima, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 1 (2000).CrossRefGoogle Scholar
  2. 2.
    G.H. Haertling, J. Am. Ceram. Soc. 82, 797 (1999).CrossRefGoogle Scholar
  3. 3.
    S.P. Feofilov, A.A. Kaplyanskii, A.B. Kulinkin, and R.I. Zakharchenya, J. Lumin. 129, 1689 (2009).CrossRefGoogle Scholar
  4. 4.
    H. Kishi, N. Kohzu, J. Sugino, H. Ohsato, Y. Iguchi, and T. Okuda, J. Eur. Ceram. Soc. 19, 1043 (1999).CrossRefGoogle Scholar
  5. 5.
    M. Ganguly, S.K. Rout, T.P. Sinha, S.K. Sharma, H.Y. Park, C.W. Ahn, and I.W. Kim, J. Alloys Compd. 579, 473 (2013).CrossRefGoogle Scholar
  6. 6.
    S.K. Ghosh, M. Ganguly, S.K. Rout, S. Chanda, and T.P. Sinha, Solid State Sci. 30, 68 (2014).CrossRefGoogle Scholar
  7. 7.
    S. Mahboob, A.B. Dutta, C. Prakash, G. Swaminathan, S.V. Suryanarayana, G. Prasad, and G.S. Kumar, Mater. Sci. Eng., B 134, 36 (2006).CrossRefGoogle Scholar
  8. 8.
    B.D. Stojanovic, Advanced in sintered electronic materials.Proceedings of the Ninth World Round Table Conference on Sintering, ed. B.D. Stojanovic, V.V. Skorokhod, and M.V. Nikolic (New York: Kluwer, 1999), p. 367.Google Scholar
  9. 9.
    Y. Tsur, T.D. Dunbar, and C.A. Randall, J. Electroceram. 7, 25 (2001).CrossRefGoogle Scholar
  10. 10.
    M.T. Biscaglia, V. Buscaglia, M. Viviani, P. Nanni, and M. Hanuskova, J. Eur. Ceram. Soc. 20, 1997 (2000).CrossRefGoogle Scholar
  11. 11.
    H.M. Chan, M.P. Harmer, and D.M. Smyth, J. Am. Ceram. Soc. 69, 507 (1986).CrossRefGoogle Scholar
  12. 12.
    A.S. Shaikh and R.W. Vest, J. Am. Ceram. Soc. 69, 689 (1986).CrossRefGoogle Scholar
  13. 13.
    D.K. Hennings, B. Schreinemacher, and H. Schreinemacher, J. Eur. Ceram. Soc. 13, 81 (1994).CrossRefGoogle Scholar
  14. 14.
    C.-T. Hu, H.-W. Chen, H.-Y. Chang, and I.-N. Lin, Jpn. J. Appl. Phys. 37, 186 (1998).CrossRefGoogle Scholar
  15. 15.
    E.T. Thostenson and T.-W. Chen, Composites A. 30, 1055 (1999).CrossRefGoogle Scholar
  16. 16.
    D. Agrawal, J. Cheng, Y. Fang, and R. Roy, Microwave Processing of Ceramics, Composites and Metallic Materials, ed. D.E. Clark, D.C. Folz, C.E. Folgar, and M.M. Mahmoud (American Ceramic Society Publication, Weterviller, 2005), p. 205.Google Scholar
  17. 17.
    M. Oghbaei and O. Mirzaee, J. Alloys Compd. 494, 175 (2010).CrossRefGoogle Scholar
  18. 18.
    R. Angalakurthi and K.C. James Raju, IOP Conf. Ser. Mater. Sci. Eng. 18, 092028 (2011).Google Scholar
  19. 19.
    Y. Fang, M.T. Lanagan, D.K. Agrawal, G.Y. Yang, C.A. Randall, T.R. Shrout, A. Henderson, M. Randall, and A. Tajuddin, J. Electroceram. 15, 13 (2005).CrossRefGoogle Scholar
  20. 20.
    H. Takahashi, Y. Numamoto, J. Tani, K. Matsuta, J. Qiu, and S. Tsurekawa, Jpn. J. Appl. Phys. 45, L30 (2006).CrossRefGoogle Scholar
  21. 21.
    H.M. Rietveld, Acta Crystallogr. 22, 151 (1967).CrossRefGoogle Scholar
  22. 22.
    Fullprof 2000, version July 2001. Juan Rodríguez-Carvajal, Laboratoire Léon Brillouin (CEA-CNRS) CEA/Saclay, Gif sur Yvette Cedex.Google Scholar
  23. 23.
    M. Ferrari and L. Lutterotti, J. Appl. Phys. 76, 7246 (1994).CrossRefGoogle Scholar
  24. 24.
    K. Watanabe, H. Ohsato, H. Kishi, Y. Okino, N. Kohzu, Y. Iguchi, and T. Okuda, Solid State Ionics 108, 129 (1998).CrossRefGoogle Scholar
  25. 25.
    C. Ostos, L. Mestres, M.L. Martnez-Sarrión, J.E. Garca, A. Albareda, and R. Perez, Solid State Sci. 11, 1016 (2009).CrossRefGoogle Scholar
  26. 26.
    Landolt-Börnsteidn III, Ferroelectric and Related Substances, vol. 16 (Berlin: Springer, 1981).Google Scholar
  27. 27.
    R.D. Shannon, Acta Crystallogr. A 32, 751 (1976).CrossRefGoogle Scholar
  28. 28.
    A. Kerfah, K. Taïbi, A. Guehria-Laidoudi, A. Simon, and J. Ravez, Solid State Sci. 8, 613 (2006).CrossRefGoogle Scholar
  29. 29.
    B.E. Vugmeister and M.D. Glinichuk, Rev. Mod. Phys. 62, 993 (1990).CrossRefGoogle Scholar
  30. 30.
    D.L. Wood and J. Tauc, Phys. Rev. B. 5, 3144 (1972).CrossRefGoogle Scholar
  31. 31.
    L.S. Cavalcante, M.F.C. Gurgel, E.C. Paris, A.Z. Simões, M.R. Joya, J.A. Varela, P.S. Pizani, and E. Longo, Acta Mater. 55, 6416 (2007).CrossRefGoogle Scholar
  32. 32.
    M. Anicete-Santos, L.S. Cavalcante, E. Orhan, E.C. Paris, L.G.P. Simões, M.R. Joya, I.L.V. Rosa, P.R. de Lucena, M.R.M.C. Santos, L.S. Santos-Júnior, P.S. Pizani, E.R. Leite, J.A. Varela, and E. Longo, Chem. Phys. 316, 260 (2005).CrossRefGoogle Scholar
  33. 33.
    C. Laulhé, F. Hippert, R. Bellissent, A. Simon, and G.J. Cuello, Phys. Rev. B. 79, 064104 (2009).CrossRefGoogle Scholar
  34. 34.
    M.L. Moreira, M.F.C. Gurgel, G.P. Mambrini, E.R. Leite, P.S. Pizani, J.A. Varela, and E. Longo, J. Phys. Chem. A 112, 8938 (2008).CrossRefGoogle Scholar
  35. 35.
    M. Borah and D. Mohanta, J. Appl. Phys. 112, 124321 (2012).CrossRefGoogle Scholar
  36. 36.
    H. Moulkia, S. Hariech, and M.S. Aida, Thin Solid Films 518, 1259 (2009).CrossRefGoogle Scholar
  37. 37.
    B. Choudhury, M. Dey, and A. Choudhury, Int. Nano Lett. 3, 25 (2013).CrossRefGoogle Scholar
  38. 38.
    N. Kumari, A. Ghosh, S. Tewari, and A. Bhattacharjee, Indian J. Phys. 88, 65 (2014).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2014

Authors and Affiliations

  • A. Mahapatra
    • 1
    • 2
  • S. Parida
    • 1
  • S. Sarangi
    • 2
  • T. Badapanda
    • 1
  1. 1.Department of PhysicsC.V. Raman College of EngineeringBhubaneswarIndia
  2. 2.Department of PhysicsCenturion University of Technology & ManagementBhubaneswarIndia

Personalised recommendations