Advertisement

JOM

, Volume 67, Issue 2, pp 342–353 | Cite as

PFC Emissions from Detected Versus Nondetected Anode Effects in the Aluminum Industry

  • David S. WongEmail author
  • Paul Fraser
  • Pascal Lavoie
  • Jooil Kim
Article

Abstract

Perfluorinated carbon compounds (PFCs) CF4 and C2F6 are potent greenhouse gases that are generated in aluminum reduction cells during events known as anode effects (AEs). Since the 1990s, the aluminum industry has made considerable progress in reducing PFCs from conventionally defined and detected AEs. However in recent years, the industry has noted the presence of unaccounted PFCs that are generated outside the conventional AE definition. Two additional AE categories have been proposed, namely low-voltage, propagating AEs (LVP-AEs) and nonpropagating AEs (NP-AEs) that relate to continuous, background levels of PFC emissions. These unaccounted PFC phenomena may help explain the recent discrepancy between industry accounting and atmospheric measurements of global PFC emissions. Estimates from AGAGE, a global network of atmospheric observatories, suggest as much as 50% underaccounting of PFCs by the aluminum industry in the 2006–2010 period. The following work reviews this discrepancy and the potential role played by LVP-AEs and NP-AEs.

Keywords

Cell Voltage Semiconductor Industry Aluminum Industry Aluminum Smelter Anode Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors would like to acknowledge the following for their important contributions to this work: Dr. Alton Tabereaux (USA), Dr. Jerry Marks (J Marks & Associates LLC, USA), Sally Rand (U.S. EPA, USA), and Dr. Mark Cooksey (CSIRO, Australia).

Furthermore, the authors would also like to thank the team of AGAGE investigators for their invaluable PFC measurement and emissions modeling contributions,12,20 notably Dr. Jens Mühle (Scripps Institution of Oceanography, University of California, San Diego, CA, USA), Dr. Anita L. Ganesan (University of Bristol, Bristol, U.K.), Dr. Shanlan Li (Research Institute of Oceanography, Seoul National University, Seoul, South Korea), The Cape Grim staff (Bureau of Meteorology, Melbourne, Australia), and Nada Derek and Bronwyn Dunse (CSIRO, Australia).

References

  1. 1.
    G. Myhre, D. Shindell, F.-M. Bréon, W. Collins, J. Fuglestvedt, J. Huang, D. Koch, J.-F. Lamarque, D. Lee, B. Mendoza, T. Nakajima, A. Robock, G. Stephens, T. Takemura, and H. Zhang, in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (AR5), ed. T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P.M. Midgley (Cambridge, U.K.: Cambridge University Press, 2013).Google Scholar
  2. 2.
    J. Marks and C. Bayliss, Light Metals 2012, ed. C.E. Suarez (Hoboken, NJ: Wiley, 2012), pp. 805–808.Google Scholar
  3. 3.
    A. Tabereaux (Paper presented at Eighth Australasian Aluminium Smelting Technology Conference and Workshops, Yeppoon, Australia, 2004).Google Scholar
  4. 4.
    W. Bjerke, R. Chase, R. Gibson, and J. Marks, Light Metals 2004, ed. A.T. Tabereaux (Warrendale, PA: TMS, 2004), pp. 367–372.Google Scholar
  5. 5.
    Intergovernmental Panel on Climate Change (IPCC), 2006 IPCC Guidelines for National Greenhouse Gas Inventories, in Volume 3Industrial Processes and Product Use, ed. J.H.Y. Katima and A. Rosland (Kanagawa, Japan: Institute for Global Environmental Strategies (IGES), 2006), pp. 4.49–4.57.Google Scholar
  6. 6.
    W. Li, Q. Zhao, J. Yang, S. Qiu, X. Chen, J. Marks, and C. Bayliss, Light Metals 2011, ed. S.J. Lindsay (Hoboken, NJ: Wiley, 2011), pp. 309–314.Google Scholar
  7. 7.
    W. Li, X. Chen, J. Yang, C. Hu, Y. Liu, D. Li, and H. Guo, Light Metals 2012, ed. C.E. Suarez (Hoboken, NJ: Wiley, 2012), pp. 619–622.Google Scholar
  8. 8.
    D.S. Wong and J. Marks, Light Metals 2012, ed. B. Sadler (Hoboken, NJ: Wiley, 2012), pp. 865–870.Google Scholar
  9. 9.
    Zarouni, A., M. Reverdy, A. Al Zarouni, and K.G. Venkatasubramaniam, Light Metals 2013, ed. B. Sadler (Hoboken, NJ: Wiley, 2013), pp. 859–863.Google Scholar
  10. 10.
    A. Al Zarouni and A.A. Zarouni (Paper presented at the 10th Australasian Aluminium Smelting Technology Conference, Launceston, Tasmania, 9–17 October 2011), pp. 1–7.Google Scholar
  11. 11.
    D.S. Wong, A. Tabereaux, and P. Lavoie, Light Metals 2014, ed. J. Grandfield (Hoboken, NJ: Wiley, 2014), pp. 529–534.Google Scholar
  12. 12.
    J. Kim, P.J. Fraser, S. Li, J. Mühle, A.L. Ganesan, P.B. Krummel, L.P. Steele, S. Park, S.-K. Kim, M.-K. Park, T. Arnold, C.M. Harth, P.K. Salameh, R.G. Prinn, R.F. Weiss, and K.-R. Kim, Geophys. Res. Lett. 41, 4787 (2014).Google Scholar
  13. 13.
    International Aluminium Institute, Results of the 2013 Anode Effect Survey (London: International Aluminium Institute, 2014), pp. 1–25.Google Scholar
  14. 14.
    C. Bayliss and J. Marks, Personal communication, 2014.Google Scholar
  15. 15.
    R.A. Rasmussen, S.A. Penkett, and N. Prosser, Nature 277, 549 (1979).CrossRefGoogle Scholar
  16. 16.
    A. Khalil and R. Rasmussen, Geophys. Res. Lett. 12, 671 (1985).CrossRefGoogle Scholar
  17. 17.
    J. Harnisch, Die Globalen Atmospharischen Haushalte der Spurengase Tetrafluormethan (CF 4) und Hexafluorethan (C 2 F 6) (Ph.D. dissertation in Mathematics and Science, Fakultaten der Georg-August-Universitat zu Gottigen, 1996).Google Scholar
  18. 18.
    J. Harnisch, in Handbook of Environmental Chemistry, 4th ed., Reactive Halogen Compounds in the Atmosphere, ed. P. Fabian and O. Singh (Berlin: Springer, 1999) pp. 81–111.Google Scholar
  19. 19.
    A. Khalil, R. Rasmussen, J. Culbertson, J. Prins, E. Grimsrud, and M. Shearer, Environ. Sci. Technol. 37, 4358 (2003).CrossRefGoogle Scholar
  20. 20.
    J. Mühle, A.L. Ganesan, B.R. Miller, P.K. Salameh, C.M. Harth, B.R. Greally, M. Rigby, L.W. Porter, L.P. Steele, C.M. Trudinger, P.B. Krummel, S. O’Doherty, P.J. Fraser, P.G. Simmonds, R.G. Prinn, and R.F. Weiss, Atmos. Chem. Phys. 10, 5145 (2010).CrossRefGoogle Scholar
  21. 21.
    J. Kim, S. Li, K.-R. Kim, A. Stohl, J. Mühle, S.-K. Kim, M.-K. Park, D.-J. Kang, G. Lee, C. Harth, P. Salameh, and R. Weiss, Geophys. Res. Lett. 37, 4787 (2010).Google Scholar
  22. 22.
    R. Keller and K.T. Larimer, Rare Earths: Science, Technology and Applications III, ed. R.G. Bautista, C.O. Bounds, T.W. Ellis, and B.T. Kilbourn (Warrendale, PA: TMS, 1997), pp. 175–180.Google Scholar
  23. 23.
    G. Wang, X. Wang, and H. Zhu, Energy Technology 2011, ed. N.R. Neelameggham, C.K. Belt, M. Jolly, R.G. Reddy, and J.A. Yurko (Hoboken: Wiley, 2011), pp. 131–135.Google Scholar
  24. 24.
    P. Fraser, P. Steele, and M. Cooksey, Light Metals 2013, ed. B. Sadler (Hoboken, NJ: Wiley, 2013), pp. 871–876.Google Scholar
  25. 25.
    U.S. Geological Survey, Mineral Commodity SummariesRare Earths (Reston, VA: U.S. Geological Survey, 2014), pp. 128–129.Google Scholar
  26. 26.
    International Aluminium Institute (IAI), World AluminiumAlumina Production (2014), http://www.world-aluminium.org/statistics/alumina-production/
  27. 27.
    B. Miller, R. Weiss, P. Salameh, T. Tanhua, B. Greally, J. Mühle, and P. Simmonds, Anal. Chem. 80, 1536 (2008).CrossRefGoogle Scholar
  28. 28.
    R. Prinn, R. Weiss, P. Fraser, P. Simmonds, D. Cunnold, F. Alyea, S. O’Doherty, P. Salameh, B. Miller, J. Huang, R. Wang, D. Hartley, C. Harth, P. Steele, G. Sturrock, P. Midgley, and A. McCulloch, J. Geophys. Res. 105, 17751 (2000).CrossRefGoogle Scholar
  29. 29.
    D.R. Worton, W.T. Sturges, L.K. Gohar, K.P. Shine, P. Martinerie, D.E. Oram, S.P. Humphrey, P. Begley, L. Gunn, J.M. Barnola, J. Schwander, and R. Mulvaney, Environ. Sci. Technol. 41, 2184 (2007).CrossRefGoogle Scholar
  30. 30.
    P. Fraser, B. Dunse, P. Steele, P. Krummel, and N. Derek (Paper presented at the Australasian Aluminium Smelting Technology Conference, Launceston, Tasmania, 9–17 October 2011).Google Scholar
  31. 31.
    Wikipedia, List of aluminium smelters, 2014, http://en.wikipedia.org/wiki/List_of_aluminium_smelters
  32. 32.
    International Aluminium Institute, Results from the 2012 Anode Effect Survey (London: International Aluminium Institute, 2013), pp. 1–24.Google Scholar
  33. 33.
    S. Li, J. Kim, K.-R. Kim, J. Mühle, S.-K. Kim, M.-K. Park, A. Stohl, D.-J. Kang, T. Arnold, C. Harth, P. Salameh, and R. Weiss, Environ. Sci. Technol. 45, 5668 (2011).CrossRefGoogle Scholar
  34. 34.
    International Aluminium Institute (IAI), World AluminiumPrimary Aluminium Production (2014), http://www.world-aluminium.org/statistics/-data
  35. 35.
    W. Li, Q. Zhao, S. Qiu, S. Zhang, and X. Chen, Light Metals 2011, ed. S.J. Lindsay (Hoboken, NJ: Wiley, 2011), pp. 357–360.Google Scholar
  36. 36.
    H. Åsheim, T.A. Aarhaug, A. Ferber, O.S. Kjos, and G.M. Haarberg, Light Metals 2014, ed. J. Granfield (Hoboken, NJ: Wiley, 2014), pp. 535–539.Google Scholar
  37. 37.
    N.R. Dando, Light Metals 2003, ed. P.N. Crepeau (Warrendale, PA: TMS, 2003), pp. 205–210.Google Scholar
  38. 38.
    S. Gaboury, A. Gosselin, P. Tremblay, and J. Marks, Light Metals 2014, ed. J. Grandfield (Hoboken, NJ: Wiley, 2014), pp. 523–528.Google Scholar
  39. 39.
    B.J. Welch (Paper presented at the Australasian Aluminium Smelting Technology Conference, Launceston, Tasmania, 9–17 October 2011).Google Scholar
  40. 40.
    X. Chen, W. Li, Y. Zhang, S. Qiu, and C. Bayliss, Light Metals 2013, ed. B. Sadler (Hoboken, NJ: Wiley, 2013), pp. 877–881.Google Scholar
  41. 41.
    A. Al Zarouni, B.J. Welch, M.M. Al-Jallaf, and A. Kumar, Light Metals 2011, ed. S.J. Lindsay (Hoboken, NJ: Wiley, 2011), pp. 333–337.Google Scholar
  42. 42.
    W. Li, X. Chen, S. Qiu, B. Zhang, and C. Bayliss, Light Metals 2013, ed. B. Sadler (Hoboken, NJ: Wiley, 2013), pp. 893–898.Google Scholar
  43. 43.
    J. Thonstad, Electrochim. Acta 12, 1219 (1967).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2015

Authors and Affiliations

  • David S. Wong
    • 1
    Email author
  • Paul Fraser
    • 2
  • Pascal Lavoie
    • 1
  • Jooil Kim
    • 3
  1. 1.Light Metals Research CentreUniversity of AucklandAucklandNew Zealand
  2. 2.Centre for Australian Weather and Climate ResearchCSIRO Oceans and Atmosphere FlagshipAspendaleAustralia
  3. 3.Scripps Institution of OceanographyUniversity of California at San DiegoLa JollaUSA

Personalised recommendations