, Volume 67, Issue 1, pp 87–93 | Cite as

A Study of the Physical and Mechanical Properties of Lutetium Compared with Those of Transition Metals: A Data Mining Approach

  • Nadera Settouti
  • Hafid Aourag


In this article, we study the physical and mechanical properties of lutetium, which will be compared with the elements of the third-row transition metals (Cs, Ba, Hf, Ta, W, Re, Os, Ir, Pt, Au, Tl, Pb, and Bi). Data mining is an ideal approach for analyzing the information and exploring the hidden knowledge among the data. The purpose of the data mining scheme is to identify and classify the effects of the relationships existing between properties. The results of the investigation are presented by means of multivariate modeling methods, such as the principal component analysis and the partial least squares regression to discover the implicit, yet meaningful, relationship between the elements of the data set, and to locate correlations between the properties of the materials. In this study, we present a data mining approach to discover such unusual correlations between properties of the elements. When comparing the properties of the transition metals with those of lutetium, our results show that lutetium shares many properties and similarities with the transition metals of the sixth row in the periodic table and can be well described as a transition metal.


Principal Component Analysis Partial Little Square Periodic Table Partial Little Square Regression Lutetium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    E.R. Scerri, J. Sci. Educ. 12, 4 (2011).Google Scholar
  2. 2.
    A. Hérold, C. R. Chim. 9, 148 (2006).CrossRefGoogle Scholar
  3. 3.
    M-L. Kamberg, The Transition Elements: The 37 Transition Metals, 1st ed. (New York: The Rosen Publishing Group Inc., 2010).Google Scholar
  4. 4.
    M. Halka and B. Nordstrom, Periodic Table of the Elements—Transition Metals (New York: Facts On File Inc, 2011).Google Scholar
  5. 5.
    H. Merz and K. Ulmer, Phys. Lett. 26, 1 (1967).CrossRefGoogle Scholar
  6. 6.
    M. Laing, Found. Chem. 7, 203 (2005).CrossRefGoogle Scholar
  7. 7.
    E. Scerri, Found. Chem. 12, 69 (2010).CrossRefGoogle Scholar
  8. 8.
    H. Abdi and L.J. Williams, WIREs Comput. Stat. 2, 433 (2010).CrossRefGoogle Scholar
  9. 9.
    A. Lengyel, K. Héberger, L. Paksy, O. Bánhidi, and R. Rajkó, Chemosphere 57, 889 (2004).CrossRefGoogle Scholar
  10. 10.
    S.R. Broderick, H. Aourag, and K. Rajan, Phys. B 406, 2055 (2011).CrossRefGoogle Scholar
  11. 11.
    H.-N. Qu, G.-Z. Li, and W.-S. Xu, Pattern Recognit. 43, 3448 (2010).CrossRefzbMATHGoogle Scholar
  12. 12.
    G. Köksal, I. Batmaz, and M.C. Testik, Exp. Syst. Appl. 38, 13448 (2011).CrossRefGoogle Scholar
  13. 13.
    E.-C. Shin, B.D. Craft, R.B. Pegg, R.D. Phillips, and R.R. Eitenmiller, Food Chem. 119, 1262 (2010).CrossRefGoogle Scholar
  14. 14.
    K. Rajan, Mater. Today 8, 38 (2005).CrossRefGoogle Scholar
  15. 15.
    I.T. Jolliffe, Principal Component Analysis, Springer series in statistics, 2nd ed. (New York: Springer, 2002).Google Scholar
  16. 16.
    I. Marchi, S. Rudaz, M. Selman, and J.-L. Veuthey, J. Chromatogr. B 845, 244 (2007).CrossRefGoogle Scholar
  17. 17.
    R. Rosipal and N. Krämer, Subspace, Latent Structure and Feature Selection Lecture Notes in Computer Science, Vol. 3940, eds. C. Saunders, M. Grobelnik, S. Gunn, and J.S. Taylor (New York: Springer, 2006), pp. 34–51.Google Scholar
  18. 18.
    K.A. Gschneidner Jr, J.-C.G. Bünzli, and V.K. Pecharsky, Handbook on the Physics and Chemistry of Rare Earths, Vol. 41 (Dordrecht, The Netherlands: North-Holland, Elsevier, 2011).Google Scholar
  19. 19.
    W.B.J. Jensen, Chem. Educ. 59, 634 (1982).CrossRefGoogle Scholar
  20. 20.
    E.R.J. Scerri, Chem. Educ. 68, 122 (1991).CrossRefGoogle Scholar
  21. 21.
    W.B.J. Jensen, Chem. Educ. 80, 952 (2003).CrossRefGoogle Scholar
  22. 22.
    W.F. Luder, The Electron-Repulsion Theory of the Chemical Bond (New York: Reinhold, 1967).Google Scholar
  23. 23.
    D.C. Hamilton, Am. J. Phys. 33, 637 (1965).CrossRefGoogle Scholar
  24. 24.
    B.T. Matthias, W.H. Zacharisen, G.W. Webb, and J.J. Engelhardt, Phys. Rev. Lett. 18, 781–784 (1967).CrossRefGoogle Scholar
  25. 25.
    L. Lavelle, J. Chem. Educ. 85, 1482 (2008).CrossRefGoogle Scholar
  26. 26.
    M. Tenenhaus, J. Pagès, L. Ambroisine, and C. Guinot, Food Qual. Prefer. 16, 315 (2005).CrossRefGoogle Scholar
  27. 27.
    D.R. Lide, eds., CRC Handbook of Chemistry and Physics, 90th ed. (Boca Raton, FL: CRC Press/Taylor and Francis, 2010).Google Scholar
  28. 28.
    W. Martienssen and H. Warlimont, eds., Springer Handbook of Condensed Matter and Materials Data, Vol. 1 (Berlin/Heidelberg, Germany: Springer, 2005).Google Scholar
  29. 29.
    R.A. Dragoset, A. Musgrove, C.W. Clark, and W.C. Martin, Periodic Table: Atomic Properties of the Elements (Version 4), NIST SP 966 (Gaithersburg, MD: National Institute of Standards and Technology, 2003),
  30. 30.
    J.C. Slater, J. Chem. Phys. 39, 3199 (1964),
  31. 31.
    S. Cotton, Lanthanide and Actinide Chemistry (London, U.K.: Wiley, 2006).CrossRefGoogle Scholar
  32. 32.
    S.L. Shang, A. Saengdeejing, Z.G. Mei, D.E. Kim, H. Zhang, S. Ganeshan, and Y. Wang, Comput. Mater. Sci. 48, 813 (2010).CrossRefGoogle Scholar
  33. 33.
    D. Stewart, Chemicool Periodic Table (Cambridge, MA: The Massachusetts Institute of Technology, 2013),
  34. 34.
    E.C.M. Chen and E.S. Chen, J. Chromatogr. A 1037, 83 (2004).CrossRefGoogle Scholar
  35. 35.
    NIST (National Institute of Standards and Technology), (2013),
  36. 36.
    C. Kittel, Introduction to Solid State Physics, 8th ed. (Hoboken, NJ: Wiley, 2005).Google Scholar
  37. 37.
    Y. Makino and S. Miyake, J. Alloy. Compd. 313, 235 (2000).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2014

Authors and Affiliations

  1. 1.LEPM, URMER, Department of PhysicsUniversity Abou Bakr BelkaidTlemcenAlgeria

Personalised recommendations