Advertisement

JOM

, Volume 67, Issue 1, pp 143–147 | Cite as

Hierarchical Bridging Between Ab Initio and Atomistic Level Computations: Calibrating the Modified Embedded Atom Method (MEAM) Potential (Part A)

  • M. F. HorstemeyerEmail author
  • J. M. Hughes
  • N. Sukhija
  • W. B. LawrimoreII
  • S. Kim
  • R. Carino
  • M. I. Baskes
Article

Abstract

This article provides a sequential calibration methodology for correlating the Modified Embedded Atom Method (MEAM) potential parameters to lower length scale calculation results or experimental data. We developed a graphical interactive MATLAB program called the MEAM Potential Calibration (MPC) tool that provides an interface with the large-scale atomistic/molecular massively parallel simulator. The MPC tool supports a rigorous yet fairly simple calibration methodology for determining the MEAM potential parameters. A pure aluminum system is used as an example to demonstrate the bridging methodology; however, the tool can be used for any material.

Keywords

Density Functional Theory Embed Atom Method Integrate Computational Material Engineer Vacancy Formation Energy Density Functional Theory Result 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors would like to acknowledge the Center for Advanced Vehicular Systems (CAVS) at Mississippi State University for support of this work.

References

  1. 1.
    J. Allison, M. Li, C. Wolverton, and X.M. Su, JOM 58 (11), 29 (2006).Google Scholar
  2. 2.
    M.F. Horstemeyer, Integrated Computational Materials Engineering (ICME) for Metals: Reinvigorating Engineering Design with Science (Hoboken, NJ: Wiley Press, 2012).CrossRefGoogle Scholar
  3. 3.
    S. Groh, E.B. Marin, M.F. Horstemeyer, and H.M. Zbib, Int. J. Plast. 25, 1456 (2009).CrossRefzbMATHGoogle Scholar
  4. 4.
    M.I. Baskes, Phys. Rev. B 59, 2666 (1987).Google Scholar
  5. 5.
    M.I. Baskes, Phys. Rev. B 46, 2727 (1992).CrossRefGoogle Scholar
  6. 6.
    M.S. Daw and M.I. Baskes, Phys. Rev. B 29, 6443 (1984).CrossRefGoogle Scholar
  7. 7.
    M.S. Daw, S.M. Foiles, and M.I. Baskes, Mater. Sci. Rep. 9, 251 (1993).CrossRefGoogle Scholar
  8. 8.
    S. Nouranian, M.A. Tschopp, S.R. Gwaltney, M.I. Baskes, and M.F. Horstemeyer, Phys. Chem. Chem. Phys. 16, 6233 (2014).CrossRefGoogle Scholar
  9. 9.
    S.J. Plimpton, J. Comput. Phys. 117, 1 (1995).CrossRefzbMATHGoogle Scholar
  10. 10.
    S.G. Kim, M.F. Horstemeyer, M.I. Baskes, M. Rais-Rohani, S. Kim, B. Jelinek, J. Houze, A. Moitra, and L. Liyanage, J. Eng. Mater. Technol. 131, 041210 (2009).CrossRefGoogle Scholar
  11. 11.
    M.A. Tschopp, K.N. Solanki, M.I. Baskes, F. Gao, X. Sun, and M.F. Horstemeyer, J. Nucl. Mater. 425, 22 (2012).CrossRefGoogle Scholar
  12. 12.
    B. Jelinek, S. Groh, M.F. Horstemeyer, J. Houze, S.G. Kim, G.J. Wagner, A. Moitra, and M.I. Baskes, Phys. Rev. B 85, 245102 (2012).CrossRefGoogle Scholar
  13. 13.
    J.H. Rose, J.R. Smith, F. Guinea, and J. Farrante, Phys. Rev. B 29, 2963 (1984).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2014

Authors and Affiliations

  • M. F. Horstemeyer
    • 1
    • 2
    • 4
    Email author
  • J. M. Hughes
    • 1
  • N. Sukhija
    • 1
  • W. B. LawrimoreII
    • 1
  • S. Kim
    • 1
  • R. Carino
    • 1
  • M. I. Baskes
    • 1
    • 3
  1. 1.Center for Advanced Vehicular SystemsMississippi State UniversityStarkvilleUSA
  2. 2.Department of Mechanical EngineeringMississippi State UniversityStarkvilleUSA
  3. 3.Department of Aerospace EngineeringMississippi State UniversityStarkvilleUSA
  4. 4.Predictive Design TechnologiesStarkvilleUSA

Personalised recommendations