, Volume 67, Issue 1, pp 34–43 | Cite as

Progress in Large-Scale Production of Graphene. Part 1: Chemical Methods

  • Yuan Li
  • Nitin ChopraEmail author


Graphene is a two-dimensional nanomaterial that has unique electrical, mechanical, thermal, and optical properties. For realizing the practical applications of graphene, one of the major challenges lies in cost-effective production of graphene-based nanomaterials at a large scale. Significant research efforts have been demonstrated in regard to scalable manufacturing of graphene and show strong potential for their commercialization and industrialization. Here, we review the state-of-the-art techniques developed for the scalable production of graphene. This review mainly discusses the top-down techniques including exfoliation of bulk graphite and chemical reduction of graphene oxide. Critical comparison for graphene quality, structure, and yields for different techniques is discussed and specific examples are described in detail.


Graphene Oxide Reduce Graphene Oxide Hydrazine Hydrate Chemical Vapor Deposition Method Reduce Graphene Oxide Sheet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was made possible by National Science Foundation (Award #: 0925445) and NSF-EPSCoR-RII award. The authors thank the University of Alabama’s Office of sponsored programs and Research Grant Committee Award for additional support. The authors thank Dr. S. Kapoor for proof reading the manuscript.


  1. 1.
    S.Z. Butler, S.M. Hollen, L. Cao, Y. Cui, J.A. Gupta, H.R. Gutierrez, and J.E. Goldberger, ACS Nano 7, 2898 (2013).CrossRefGoogle Scholar
  2. 2.
    R. Mas-Balleste, C. Gomez-Navarro, J. Gomez-Herrero, and F. Zamora, Nanoscale 3, 20 (2011).CrossRefGoogle Scholar
  3. 3.
    A.K. Geim and K.S. Novoselov, Nat. Mater. 6, 183 (2007).CrossRefGoogle Scholar
  4. 4.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, and A.A. Firsov, Science 306, 666 (2004).CrossRefGoogle Scholar
  5. 5.
    M.J. Allen, V.C. Tung, and R.B. Kaner, Chem. Rev. 110, 132 (2009).CrossRefGoogle Scholar
  6. 6.
    K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, and H.L. Stormer, Solid State Commun. 146, 351 (2008).CrossRefGoogle Scholar
  7. 7.
    C. Lee, X. Wei, J.W. Kysar, and J. Hone, Science 321, 385 (2008).CrossRefGoogle Scholar
  8. 8.
    A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C.N. Lau, Nano Lett. 8, 902 (2008).CrossRefGoogle Scholar
  9. 9.
    A.K. Geim, Science 324, 1530 (2009).CrossRefGoogle Scholar
  10. 10.
    M.D. Stoller, S. Park, Y. Zhu, J. An, and R.S. Ruoff, Nano Lett. 8, 3498 (2008).CrossRefGoogle Scholar
  11. 11.
    R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, and A.K. Geim, Science 320, 1308 (2008).CrossRefGoogle Scholar
  12. 12.
    L. Dai, Acc. Chem. Res. 46, 31 (2012).CrossRefGoogle Scholar
  13. 13.
    C.K. Chua and M. Pumera, Chem. Soc. Rev. 42, 3222 (2013).CrossRefGoogle Scholar
  14. 14.
    V. Georgakilas, M. Otyepka, A.B. Bourlinos, V. Chandra, N. Kim, K.C. Kemp, and K.S. Kim, Chem. Rev. 112, 6156 (2012).CrossRefGoogle Scholar
  15. 15.
    Z. Yin, J. Zhu, Q. He, X. Cao, C. Tan, H. Chen, and H. Zhang, Adv. Energy Mater. 4, 1 (2014).Google Scholar
  16. 16.
    M. Pumera, Energy Environ. Sci. 4, 668 (2011).CrossRefGoogle Scholar
  17. 17.
    K.S. Novoselov, V.I. Fal, L. Colombo, P.R. Gellert, M.G. Schwab, and K. Kim, Nature 490, 192 (2012).CrossRefGoogle Scholar
  18. 18.
    A.A. Balandin, Nat. Mater. 10, 569 (2011).CrossRefGoogle Scholar
  19. 19.
    J.H. Seol, I. Jo, A.L. Moore, L. Lindsay, Z.H. Aitken, M.T. Pettes, and L. Shi, Science 328, 213 (2010).CrossRefGoogle Scholar
  20. 20.
    R.M. Westervelt, Science 320, 324 (2008).CrossRefGoogle Scholar
  21. 21.
    F. Bonaccorso, Z. Sun, T. Hasan, and A.C. Ferrari, Nat. Photonics 4, 611 (2010).CrossRefGoogle Scholar
  22. 22.
    J.T. Robinson, F.K. Perkins, E.S. Snow, Z. Wei, and P.E. Sheehan, Nano Lett. 8, 3137 (2008).CrossRefGoogle Scholar
  23. 23.
    J.D. Fowler, M.J. Allen, V.C. Tung, Y. Yang, R.B. Kaner, and B.H. Weiller, ACS Nano 3, 301 (2009).CrossRefGoogle Scholar
  24. 24.
    Z. Fang, Z. Liu, Y. Wang, P.M. Ajayan, P. Nordlander, and N.J. Halas, Nano Lett. 12, 3808 (2012).CrossRefGoogle Scholar
  25. 25.
    J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, and F.H. Koppens, Nature 487, 77 (2012).Google Scholar
  26. 26.
    J. Maassen, W. Ji, and H. Guo, Nano Lett. 11, 151 (2010).CrossRefGoogle Scholar
  27. 27.
    A.N. Grigorenko, M. Polini, and K.S. Novoselov, Nat. Photonics 6, 749 (2012).CrossRefGoogle Scholar
  28. 28.
    M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, and X. Zhang, Nature 474, 64 (2011).CrossRefGoogle Scholar
  29. 29.
    X. Huang, X. Qi, F. Boey, and H. Zhang, Chem. Soc. Rev. 41, 666 (2012).CrossRefGoogle Scholar
  30. 30.
    F. Bonaccorso, A. Lombardo, T. Hasan, Z. Sun, L. Colombo, and A.C. Ferrari, Mater. Today 15, 564 (2012).CrossRefGoogle Scholar
  31. 31.
    Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, and R.S. Ruoff, Adv. Mater. 22, 3906 (2010).CrossRefGoogle Scholar
  32. 32.
    C. Soldano, A. Mahmood, and E. Dujardin, Carbon 48, 2127 (2010).CrossRefGoogle Scholar
  33. 33.
    X.M. Chen, G.H. Wu, Y.Q. Jiang, Y.R. Wang, and X. Chen, Analyst 136, 4631 (2011).CrossRefGoogle Scholar
  34. 34.
    Y. Zhang, L. Zhang, and C. Zhou, Acc Chem Res 46, 2329 (2013).CrossRefGoogle Scholar
  35. 35.
    C. Mattevi, H. Kim, and M. Chhowalla, J Mater Chem 21, 3324 (2011).CrossRefGoogle Scholar
  36. 36.
    M.E. Ramón, A. Gupta, C. Corbet, D.A. Ferrer, H.C. Movva, G. Carpenter, and S.K. Banerjee, ACS Nano 5, 7198 (2011).CrossRefGoogle Scholar
  37. 37.
    K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, and B.H. Hong, Nature 457, 706 (2009).CrossRefGoogle Scholar
  38. 38.
    R.M. Frazier, W.L. Hough, N. Chopra, and K.W. Hathcock, Recent Patents Nanotechnol 6, 79 (2012).CrossRefGoogle Scholar
  39. 39.
    A. Ciesielski and P. Samorì, Chem. Soc. Rev. 43, 381 (2014).CrossRefGoogle Scholar
  40. 40.
    K.R. Paton, E. Varrla, C. Backes, R.J. Smith, U. Khan, A. O’Neill, and J.N. Coleman, Nat. Mater. 13, 624 (2014).CrossRefGoogle Scholar
  41. 41.
    I.Y. Jeon, H.J. Choi, S.M. Jung, J.M. Seo, M.J. Kim, L. Dai, and J.B. Baek, J. Am. Chem. Soc. 135, 1386 (2012).CrossRefGoogle Scholar
  42. 42.
    R. Hu, W. Sun, Y. Chen, M. Zeng, and M. Zhu, J. Mater. Chem. A 2, 9118 (2014).CrossRefGoogle Scholar
  43. 43.
    T. Lin, J. Chen, H. Bi, D. Wan, F. Huang, X. Xie, and M. Jiang, J. Mater. Chem. A 1, 500 (2013).CrossRefGoogle Scholar
  44. 44.
    C. Knieke, A. Berger, M. Voigt, R.N.K. Taylor, J. Röhrl, and W. Peukert, Carbon 48, 3196 (2010).CrossRefGoogle Scholar
  45. 45.
    X. Geng, Y. Guo, D. Li, W. Li, C. Zhu, X. Wei, and L. Liu, Sci. Rep. 3, 1134 (2013).Google Scholar
  46. 46.
    W. Lu, S. Liu, X. Qin, L. Wang, J. Tian, Y. Luo, and X. Sun, J. Mater. Chem. 22, 8775 (2012).CrossRefGoogle Scholar
  47. 47.
    Y. Hernandez, V. Nicolosi, M. Lotya, F.M. Blighe, Z. Sun, S. De, and J.N. Coleman, Nat. Nanotechnol. 3, 563 (2008).CrossRefGoogle Scholar
  48. 48.
    Y. Wang, X. Tong, X. Guo, Y. Wang, G. Jin, and X. Guo, Nanotechnology 24, 475602 (2013).CrossRefGoogle Scholar
  49. 49.
    H. Yang, Y. Hernandez, A. Schlierf, A. Felten, A. Eckmann, S. Johal, and C. Casiraghi, Carbon 53, 357 (2013).CrossRefGoogle Scholar
  50. 50.
    L. Guardia, M.J. Fernández-Merino, J.I. Paredes, P. Solis-Fernandez, S. Villar-Rodil, A. Martinez-Alonso, and J.M.D. Tascón, Carbon 49, 1653 (2011).CrossRefGoogle Scholar
  51. 51.
    M. Zhang, R.R. Parajuli, D. Mastrogiovanni, B. Dai, P. Lo, W. Cheung, and H. He, Small 6, 1100 (2010).CrossRefGoogle Scholar
  52. 52.
    E.Y. Choi, W. San Choi, Y.B. Lee, and Y.Y. Noh, Nanotechnology 22, 365601 (2011).CrossRefGoogle Scholar
  53. 53.
    V. Chabot, B. Kim, B. Sloper, C. Tzoganakis, and A. Yu, Sci. Rep. 3, 1378 (2013).CrossRefGoogle Scholar
  54. 54.
    W. Du, J. Lu, P. Sun, Y. Zhu, and X. Jiang, Chem. Phys. Lett. 568, 198 (2013).CrossRefGoogle Scholar
  55. 55.
    J. Lu, J.X. Yang, J. Wang, A. Lim, S. Wang, and K.P. Loh, ACS Nano 3, 2367 (2009).CrossRefGoogle Scholar
  56. 56.
    N. Liu, F. Luo, H. Wu, Y. Liu, C. Zhang, and J. Chen, Adv. Funct. Mater. 18, 1518 (2008).CrossRefGoogle Scholar
  57. 57.
    D. Wei, L. Grande, V. Chundi, R. White, C. Bower, P. Andrew, and T. Ryhänen, Chem. Commun. 48, 1239 (2012).CrossRefGoogle Scholar
  58. 58.
    A.T. Najafabadi and E. Gyenge, Carbon 71, 58 (2014).CrossRefGoogle Scholar
  59. 59.
    Y. Shin, J. Lee, J. Yang, J. Park, K. Lee, S. Kim, and H. Lee, Small 10, 866 (2014).CrossRefGoogle Scholar
  60. 60.
    V. Sridhar, J.H. Jeon, and I.K. Oh, Carbon 48, 2953 (2010).CrossRefGoogle Scholar
  61. 61.
    P. Russo, A. Hu, G. Compagnini, W.W. Duley, and N.Y. Zhou, Nanoscale 6, 2381 (2014).CrossRefGoogle Scholar
  62. 62.
    W. Qian, R. Hao, Y. Hou, Y. Tian, C. Shen, H. Gao, and X. Liang, Nano Res. 2, 706 (2009).CrossRefGoogle Scholar
  63. 63.
    X. Liu, M. Zheng, K. Xiao, Y. Xiao, C. He, H. Dong, and Y. Liu, Nanoscale 6, 4598 (2014).CrossRefGoogle Scholar
  64. 64.
    N.W. Pu, C.A. Wang, Y. Sung, Y.M. Liu, and M.D. Ger, Mater. Lett. 63, 1987 (2009).CrossRefGoogle Scholar
  65. 65.
    I. Levchenko, O. Volotskova, A. Shashurin, Y. Raitses, K. Ostrikov, and M. Keidar, Carbon 48, 4570 (2010).CrossRefGoogle Scholar
  66. 66.
    N. Li, Z. Wang, K. Zhao, Z. Shi, Z. Gu, and S. Xu, Carbon 48, 255 (2010).CrossRefGoogle Scholar
  67. 67.
    W.S. Hummers Jr and R.E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958).CrossRefGoogle Scholar
  68. 68.
    Y. Sun, S. Wang, C. Li, P. Luo, L. Tao, Y. Wei, and G. Shi, Phys. Chem. Chem. Phys. 15, 9907 (2013).CrossRefGoogle Scholar
  69. 69.
    D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, and J.M. Tour, ACS Nano 4, 4806 (2010).CrossRefGoogle Scholar
  70. 70.
    L. Sun and B. Fugetsu, Mater. Lett. 109, 207 (2013).CrossRefGoogle Scholar
  71. 71.
    D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, and J.M. Tour, ACS Nano 4, 4806 (2010).CrossRefGoogle Scholar
  72. 72.
    J.M. Tour, Nat. Mater. 13, 545 (2014).CrossRefGoogle Scholar
  73. 73.
    X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang, and H. Dai, Nat. Nanotechnol. 3, 538 (2008).CrossRefGoogle Scholar
  74. 74.
    L.H. Liu, M.M. Lerner, and M. Yan, Nano Lett. 10, 3754 (2010).CrossRefGoogle Scholar
  75. 75.
    B.J. Avan Wees, Chem. Commun. 46, 7539 (2010).CrossRefGoogle Scholar
  76. 76.
    S. Stankovich, D.A. Dikin, G.H. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, and R.S. Ruoff, Nature 442, 282 (2006).CrossRefGoogle Scholar
  77. 77.
    S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, and R.S. Ruoff, Carbon 45, 1558 (2007).CrossRefGoogle Scholar
  78. 78.
    W. Gao, L.B. Alemany, L. Ci, and P.M. Ajayan, Nat. Chem. 1, 403 (2009).CrossRefGoogle Scholar
  79. 79.
    H. Feng, R. Cheng, X. Zhao, X. Duan, and J. Li, Nat. Commun. 4, 1539 (2013).CrossRefGoogle Scholar
  80. 80.
    M. Zhang, B. Gao, D.C. Vanegas, E.S. McLamore, J. Fang, L. Liu, and H. Chen, Chem. Eng. J. 243, 340 (2014).CrossRefGoogle Scholar
  81. 81.
    C. Zhu, S. Guo, Y. Fang, and S. Dong, ACS Nano 4, 2429 (2010).CrossRefGoogle Scholar
  82. 82.
    X. Zhou and Z. Liu, Chem. Commun. 46, 2611 (2010).CrossRefGoogle Scholar
  83. 83.
    Y. Tian, G. Wu, X. Tian, X. Tao, and W. Chen, Sci. Rep. 3, 3327 (2013).Google Scholar
  84. 84.
    I.K. Moon, J. Lee, R.S. Ruoff, and H. Lee, Nat. Commun. 1, 73 (2010).CrossRefGoogle Scholar
  85. 85.
    Z.J. Fan, W. Kai, J. Yan, T. Wei, L.J. Zhi, J. Feng, and F. Wei, ACS Nano 5, 191 (2010).CrossRefGoogle Scholar
  86. 86.
    C.A. Amarnath, C.E. Hong, N.H. Kim, B.C. Ku, T. Kuila, and J.H. Lee, Carbon 49, 3497 (2011).CrossRefGoogle Scholar
  87. 87.
    H.L. Guo, X.F. Wang, Q.Y. Qian, F.B. Wang, and X.H. Xia, ACS Nano 3, 2653 (2009).CrossRefGoogle Scholar
  88. 88.
    I.Y. Jeon, H.J. Choi, S.M. Jung, J.M. Seo, M.J. Kim, L. Dai, and J.B. Baek, J. Am. Chem. Soc. 135, 1386 (2012).CrossRefGoogle Scholar
  89. 89.
    R. Arvidsson, D. Kushnir, B.A. Sandén, and S. Molander, Environ. Sci. Technol. 48, 4529 (2014).CrossRefGoogle Scholar
  90. 90.
    S. Some, Y. Kim, Y. Yoon, H. Yoo, S. Lee, Y. Park, and H. Lee, Sci. Rep. 3, 1929 (2013).Google Scholar
  91. 91.
    K.H. Lee, B. Lee, S.J. Hwang, J.U. Lee, H. Cheong, O.S. Kwon, and N.H. Hur, Carbon 69, 327 (2014).CrossRefGoogle Scholar
  92. 92.
    S. Wakeland, R. Martinez, J.K. Grey, and C.C. Luhrs, Carbon 48, 3463 (2010).CrossRefGoogle Scholar
  93. 93.
    A. Kaniyoor, T.T. Baby, and S. Ramaprabhu, J. Mater. Chem. 20, 8467 (2010).CrossRefGoogle Scholar
  94. 94.
    H. He, X. Li, J. Wang, T. Qiu, Y. Fang, Q. Song, and L. Zhi, Small 9, 820 (2013).CrossRefGoogle Scholar
  95. 95.
    D. Zhou, Y. Cui, P.W. Xiao, M.Y. Jiang, and B.H. Han, Nat. Commun. 5, 4716 (2014).CrossRefGoogle Scholar
  96. 96.
    D. Yu, K. Goh, H. Wang, L. Wei, W. Jiang, Q. Zhang, and Y. Chen, Nat. Nanotechnol. 9, 555 (2014).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2014

Authors and Affiliations

  1. 1.Department of Metallurgical and Materials Engineering, Center for Materials for Information Technology (MINT)The University of AlabamaTuscaloosaUSA
  2. 2.Department of Biological SciencesThe University of AlabamaTuscaloosaUSA

Personalised recommendations