JOM

, Volume 67, Issue 1, pp 154–163 | Cite as

A Semi-Empirical Model for Tilted-Gun Planar Magnetron Sputtering Accounting for Chimney Shadowing

Article

Abstract

Integrated computational materials engineering (ICME) approaches to composition and thickness profiles of sputtered thin-film samples are the key to expediting materials exploration for these materials. Here, an ICME-based semi-empirical approach to modeling the thickness of thin-film samples deposited via magnetron sputtering is developed. Using Yamamura’s dimensionless differential angular sputtering yield and a measured deposition rate at a point in space for a single experimental condition, the model predicts the deposition profile from planar DC sputtering sources. The model includes corrections for off-center, tilted gun geometries as well as shadowing effects from gun chimneys used in most state-of-the-art sputtering systems. The modeling algorithm was validated by comparing its results with experimental deposition rates obtained from a sputtering system utilizing sources with a multi-piece chimney assembly that consists of a lower ground shield and a removable gas chimney. Simulations were performed for gun-tilts ranging from 0° to 31.3° from the vertical with and without the gas chimney installed. The results for the predicted and experimental angular dependence of the sputtering deposition rate were found to have an average magnitude of relative error of \( 4.14\% \pm 3.02\% \) for a 0°–31.3° gun-tilt range without the gas chimney, and \( 2.12\% \pm 1.71\% \) for a 17.7°–31.3° gun-tilt range with the gas chimney. The continuum nature of the model renders this approach reverse-optimizable, providing a rapid tool for assisting in the understanding of the synthesis-composition-property space of novel materials.

Supplementary material

11837_2014_1234_MOESM1_ESM.pdf (16.9 mb)
Supplementary material 1 (PDF 17296 kb)

References

  1. 1.
    D. Brassard, S. Fourmaux, M. Jean-Jacques, J.C. Kieffer, and M.A. El Khakani, Appl. Phys. Lett. 87, 103106 (2005).CrossRefGoogle Scholar
  2. 2.
    M. Ogita, K. Higo, Y. Nakanishi, and Y. Hatanaka, Appl. Surf. Sci. 175, 721 (2001).CrossRefGoogle Scholar
  3. 3.
    J.A. Glasscock, R.F. Barnes, I.C. Plumb, and N. Savvides, J. Phys. Chem. C 111, 16477 (2007).CrossRefGoogle Scholar
  4. 4.
    J. Szczyrbowski, G. Brauer, G. Teschner, and A. Zmelty, J. Non-Cryst. Solids 218, 25 (1997).CrossRefGoogle Scholar
  5. 5.
    Y. Taki, Vacuum 74, 431 (2004).CrossRefGoogle Scholar
  6. 6.
    P.R. Vinod, H. Kakiuchi, T. Terai, A.N. Itakura, and M. Kitajima, Int. J. Mod. Phys. B 16, 1008 (2002).CrossRefGoogle Scholar
  7. 7.
    J. Hattrick-Simpers, D. Hunter, M. Craciunescu, K.S. Jang, M. Murakami, J. Cullen, M. Wuttig, I. Takeuchi, E. Lofland, L. Benderksy, N. Woo, B. Van Dover, T. Takahashi, and Y. Furuya, Appl. Phys. Lett. 93, 102507 (2008).CrossRefGoogle Scholar
  8. 8.
    N. Li and B.M. Lairson, IEEE Trans. Magn. 35, 1077 (1999).CrossRefGoogle Scholar
  9. 9.
    D. Liufu and K.C. Kao, J. Vac. Sci. Technol. A 16, 2360 (1998).CrossRefGoogle Scholar
  10. 10.
    D. Hunter, W. Osborn, K. Wang, N. Kazantseva, J. Hattrick-Simpers, R. Suchoski, R. Takahashi, M.L. Young, A. Mehta, L. Bendersky, S.E. Lofland, M. Wuttig, and I. Takeuchi, Nat. Commun. 2, 518 (2011).CrossRefGoogle Scholar
  11. 11.
    W.F. Maier, K. Stoewe, and S. Sieg, Angew. Chem. Int. Ed. 46, 6016 (2007).CrossRefGoogle Scholar
  12. 12.
    R. Potyrailo, K. Rajan, K. Stoewe, I. Takeuchi, B. Chisholm, and H. Lam, ACS Comb. Sci. 13, 579 (2011).CrossRefGoogle Scholar
  13. 13.
    C.J. Metting, J.K. Bunn, E. Underwood, S. Smoak, and J. Hattrick-Simpers, ACS Comb. Sci. 15, 419 (2013).CrossRefGoogle Scholar
  14. 14.
    J.F. Chang, H.H. Kuo, I. Leu, and M. Hon, Sens. Actuators B 84, 258 (2002).CrossRefGoogle Scholar
  15. 15.
    C. Corbella, A. Vives, A. Pinyol, E. Bertran, C. Canal, M.C. Polo, and J.L. Andujar, Surf. Coat. Technol. 177, 409 (2004).CrossRefGoogle Scholar
  16. 16.
    P. Sigmund, Thin Solid Films 520, 6031 (2012).CrossRefGoogle Scholar
  17. 17.
    C.H. Shon and J.K. Lee, Appl. Surf. Sci. 192, 258 (2002).CrossRefGoogle Scholar
  18. 18.
    P.-G. Fournier, A. Nourtier, V.I. Shulga, and M. El Fqih, Nucl. Instr. Methods Phys. Res. Sect. B 230, 577 (2005).CrossRefGoogle Scholar
  19. 19.
    K. Rodelsperger, W. Kruger, and A. Scharmann, Z. Physik A 272, 127 (1975).CrossRefGoogle Scholar
  20. 20.
    P. Sigmund, Phys. Rev. 184, 383 (1969).CrossRefGoogle Scholar
  21. 21.
    N. Matsunami, Y. Yamamura, Y. Itikawa, N. Itoh, Y. Kazumata, S. Miyagawa, K. Morita, and R. Shimizu, Radiat. Eff. Lett. 57, 15 (1980).CrossRefGoogle Scholar
  22. 22.
    Y. Yamamura, Radiat. Eff. Defects Solids 55, 49 (1981).CrossRefGoogle Scholar
  23. 23.
    X.Q. Meng, X.J. Fan, and H.X. Guo, Thin Solid Films 335, 279 (1998).CrossRefGoogle Scholar
  24. 24.
    J.M. Gregoire, M.B. Lobovsky, M.F. Heinz, F.J. DiSalvo, and R.B. van Dover, Phys. Rev. B 76, 195437 (2007).CrossRefGoogle Scholar
  25. 25.
    D. Depla and W. Leroy, Thin Solid Films 520, 6337 (2012).CrossRefGoogle Scholar
  26. 26.
    M.P. Seah, C.A. Clifford, F.M. Green, and I.S. Gilmore, Surf. Interface Anal. 37, 444 (2005).CrossRefGoogle Scholar
  27. 27.
    J.S. Liebig, P. Frach, H. Bartzsch, D. Schulze, and H. Schwanbeck, Surf. Coat. Technol. 97, 626 (1997).CrossRefGoogle Scholar
  28. 28.
    A. Gras-Marti and J.A. Valles-Abarca, J. Appl. Phys. 54, 1071 (1983).CrossRefGoogle Scholar
  29. 29.
    J.A. Valles-Abarca and A. Gras-Marti, J. Appl. Phys. 55, 1370 (1984).CrossRefGoogle Scholar
  30. 30.
    K. Meyer, I.K. Schuller, and C.M. Falco, J. Appl. Phys. 52, 5803 (1981).CrossRefGoogle Scholar
  31. 31.
    M. Thompson, Philos. Mag. 18, 377 (1968).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2014

Authors and Affiliations

  • J. K. Bunn
    • 1
  • C. J. Metting
    • 1
  • J. Hattrick-Simpers
    • 1
  1. 1.Chemical EngineeringUniversity of South CarolinaColumbiaUSA

Personalised recommendations