Advertisement

JOM

, Volume 67, Issue 1, pp 186–201 | Cite as

A Review of Quantitative Phase-Field Crystal Modeling of Solid–Liquid Structures

  • Ebrahim Asadi
  • Mohsen Asle Zaeem
Article

Abstract

Phase-field crystal (PFC) is a model with atomistic-scale details acting on diffusive time scales. PFC uses the density field as its order parameter, which takes a constant value in the liquid phase and a periodic function in the solid phase. PFC naturally takes into account elasticity, solid–liquid interface free energy, surface anisotropy, and grain boundary free energy by using this single-order parameter in modeling of coexisting solid–liquid structures. In this article, the recent advancements in PFC modeling of materials nanostructures are reviewed, which includes an overview of different PFC models and their applications, and the numerical algorithms developed for solving the PFC governing equations. A special focus is given to PFC models that simulate coexisting solid–liquid structures. The quantitative PFC models for solid–liquid structures are reviewed, and the methods for determining PFC model parameters for specific materials are described in detail. The accuracy of different PFC models in calculating the solid–liquid interface properties is discussed.

Keywords

Free Energy Molecular Dynamic Simulation Density Field Input Property Amplitude Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    A. Karma and W.-J. Rappel, Phys. Rev. E 57, 4323 (1998).MATHGoogle Scholar
  2. 2.
    N. Provatas, N. Goldenfeld, and J. Dantzig, Phys. Rev. Lett. 80, 3308 (1998).Google Scholar
  3. 3.
    M. Asle Zaeem, H. El Kadiri, P. Wang, and M. Horstemeyer, Comput. Mater. Sci. 50, 2488 (2011).Google Scholar
  4. 4.
    Y.U. Wang, Y. Jin, A. Cuitino, and A. Khachaturyan, Acta Mater. 49, 1847 (2001).Google Scholar
  5. 5.
    M. Mamivand, M. Asle Zaeem, H. El Kadiri, and L.-Q. Chen, Acta Mater. 61, 5223 (2013).Google Scholar
  6. 6.
    K. Elder, M. Katakowski, M. Haataja, and M. Grant, Phys. Rev. Lett. 88, 245701 (2002).Google Scholar
  7. 7.
    K.R. Elder and M. Grant, Phys. Rev. E 70, 051605 (2004).Google Scholar
  8. 8.
    S. van Teeffelen, R. Backofen, A. Voigt, and H. Löwen, Phys. Rev. E 79, 051404 (2009).Google Scholar
  9. 9.
    N. Pisutha-Arnond, V. Chan, K. Elder, and K. Thornton, Phys. Rev. B 87, 014103 (2013).Google Scholar
  10. 10.
    J. Berry, K. Elder, and M. Grant, Phys. Rev. B 77, 224114 (2008).Google Scholar
  11. 11.
    J. Mellenthin, A. Karma, and M. Plapp, Phys. Rev. B 78, 184110 (2008).Google Scholar
  12. 12.
    J. Berry, M. Grant, and K. Elder, Phys. Rev. E 73, 031609 (2006).Google Scholar
  13. 13.
    K. Elder, K. Thornton, and J. Hoyt, Philos. Mag. 91, 151 (2011).Google Scholar
  14. 14.
    M. Greenwood, N. Provatas, and J. Rottler, Phys. Rev. Lett. 105, 045702 (2010).Google Scholar
  15. 15.
    N. Ofori-Opoku, V. Fallah, M. Greenwood, S. Esmaeili, and N. Provatas, Phys. Rev. B 87, 134105 (2013).Google Scholar
  16. 16.
    J. Berry, N. Provatas, J. Rottler, and C.W. Sinclair, Phys. Rev. B 86, 224112 (2012).Google Scholar
  17. 17.
    H. Emmerich, H. Löwen, R. Wittkowski, T. Gruhn, G.I. Tóth, G. Tegze, and L. Gránásy, Adv. Phys. 61, 665 (2012).Google Scholar
  18. 18.
    H. Humadi, N. Ofori-Opoku, N. Provatas, and J.J. Hoyt, JOM 65, 1103 (2013).Google Scholar
  19. 19.
    K.-A. Wu and A. Karma, Phys. Rev. B 76, 184107 (2007).Google Scholar
  20. 20.
    F. Cherne, M. Baskes, and P. Deymier, Phys. Rev. B 65, 024209 (2001).Google Scholar
  21. 21.
    E. Asadi, M. Asle Zaeem, S. Nouranian, and M.I. Baskes, unpublished work (2014).Google Scholar
  22. 22.
    E. Asadi, M. Asle Zaeem, and M.I. Baskes, JOM 66, 429 (2014).Google Scholar
  23. 23.
    J. Hoyt, M. Asta, and A. Karma, Mater. Sci. Eng.: Reports 41, 121 (2003).Google Scholar
  24. 24.
    J. Monk, Y. Yang, M. Mendelev, M. Asta, J. Hoyt, and D. Sun, Model. Simul. Mater. Sci. 18, 015004 (2010).Google Scholar
  25. 25.
    D. Sun, M. Asta, and J. Hoyt, Phys. Rev. B 69, 024108 (2004).Google Scholar
  26. 26.
    D. Sun, M. Mendelev, C. Becker, K. Kudin, T. Haxhimali, M. Asta, J. Hoyt, A. Karma, and D. Srolovitz, Phys. Rev. B 73, 024116 (2006).Google Scholar
  27. 27.
    R.L. Davidchack, J.R. Morris, and B.B. Laird, J. Chem. Phys. 125, 094710 (2006).Google Scholar
  28. 28.
    J. Swift and P. Hohenberg, Phys. Rev. A 15, 319 (1977).Google Scholar
  29. 29.
    S.A. Brazovskii, Zh. Eksp. Teor. Fiz. 68, 175 (1975).Google Scholar
  30. 30.
    J.W. Cahn and J.E. Hilliard, J. Chem. Phys. 28, 258 (1958).Google Scholar
  31. 31.
    K. Elder, N. Provatas, J. Berry, P. Stefanovic, and M. Grant, Phys. Rev. B 75, 064107 (2007).Google Scholar
  32. 32.
    T. Ramakrishnan and M. Yussouff, Phys. Rev. B 19, 2775 (1979).Google Scholar
  33. 33.
    M. Oettel, S. Dorosz, M. Berghoff, B. Nestler, and T. Schilling, Phys. Rev. E 86, 021404 (2012).Google Scholar
  34. 34.
    M. Cheng, J. Kundin, D. Li, and H. Emmerich, Phil. Mag. Lett. 92, 517 (2012).Google Scholar
  35. 35.
    P. Tupper and M. Grant, Europhys. Lett. 81, 40007 (2008).Google Scholar
  36. 36.
    K.-A. Wu, M. Plapp, and P.W. Voorhees, J. Phys.: Condens. Matter 22, 364102 (2010).Google Scholar
  37. 37.
    N. Pisutha-Arnond, V. Chan, M. Iyer, V. Gavini, and K. Thornton, Phys. Rev. E 87, 013313 (2013).Google Scholar
  38. 38.
    P. Stefanovic, M. Haataja, and N. Provatas, Phys. Rev. Lett. 96, 225504 (2006).Google Scholar
  39. 39.
    P. Stefanovic, M. Haataja, and N. Provatas, Phys. Rev. E 80, 046107 (2009).Google Scholar
  40. 40.
    R. Prieler, J. Hubert, D. Li, B. Verleye, R. Haberkern, and H. Emmerich, J. Phys.: Condens. Matter 21, 464110 (2009).Google Scholar
  41. 41.
    A. Jaatinen and T. Ala-Nissila, J. Phys.: Condens. Matter 22, 205402 (2010).Google Scholar
  42. 42.
    N. Provatas and K. Elder, Phase-Field Methods in Materials Science and Engineering (New York: Wiley, 2010).Google Scholar
  43. 43.
    G. Tegze, L. Gránásy, G. Tóth, F. Podmaniczky, A. Jaatinen, T. Ala-Nissila, and T. Pusztai, Phys. Rev. Lett. 103, 035702 (2009).Google Scholar
  44. 44.
    G.I. Tóth, G. Tegze, T. Pusztai, G. Tóth, and L. Gránásy, J. Phys.: Condens. Matter 22, 364101 (2010).Google Scholar
  45. 45.
    K.-A. Wu, A. Adland, and A. Karma, Phys. Rev. E 81, 061601 (2010).Google Scholar
  46. 46.
    R. Lifshitz and D.M. Petrich, Phys. Rev. Lett. 79, 1261 (1997).Google Scholar
  47. 47.
    S. Mkhonta, K. Elder, and Z.-F. Huang, Phys. Rev. Lett. 111, 035501 (2013).Google Scholar
  48. 48.
    M.A. Choudhary, J. Kundin, and H. Emmerich, Philos. Mag. Lett. 92, 451 (2012).Google Scholar
  49. 49.
    P.Y. Chan, N. Goldenfeld, and J. Dantzig, Phys. Rev. E 79, 035701 (2009).Google Scholar
  50. 50.
    M.J. Robbins, A.J. Archer, U. Thiele, and E. Knobloch, Phys. Rev. E 85, 061408 (2012).Google Scholar
  51. 51.
    M. Greenwood, J. Rottler, and N. Provatas, Phys. Rev. E 83, 031601 (2011).Google Scholar
  52. 52.
    M. Greenwood, N. Ofori-Opoku, J. Rottler, and N. Provatas, Phys. Rev. B 84, 064104 (2011).Google Scholar
  53. 53.
    N. Ofori-Opoku, J. Stolle, Z.-F. Huang, and N. Provatas, Phys. Rev. B 88, 104106 (2013).Google Scholar
  54. 54.
    V. Fallah, N. Ofori-Opoku, J. Stolle, N. Provatas, and S. Esmaeili, Acta Mater. 61, 3653 (2013).Google Scholar
  55. 55.
    E.J. Schwalbach, J.A. Warren, K.-A. Wu, and P.W. Voorhees, Phys. Rev. E 88, 023306 (2013).Google Scholar
  56. 56.
    R. Wittkowski, H. Löwen, and H.R. Brand, Phys. Rev. E 82, 031708 (2010).Google Scholar
  57. 57.
    S.K. Mkhonta, K.R. Elder, and M. Grant, Eur. J. Phys. E Soft Matter 32, 349 (2010).Google Scholar
  58. 58.
    S.K. Mkhonta, D. Vernon, K. Elder, and M. Grant, Europhys. Lett. 101, 56004 (2013).Google Scholar
  59. 59.
    C.V. Achim, R. Wittkowski, and H. Löwen, Phys. Rev. E 83, 061712 (2011).Google Scholar
  60. 60.
    R. Wittkowski, H. Löwen, and H.R. Brand, Phys. Rev. E 83, 061706 (2011).Google Scholar
  61. 61.
    E. Granato, J. Ramos, C. Achim, J. Lehikoinen, S. Ying, T. Ala-Nissila, and K. Elder, Phys. Rev. E 84, 031102 (2011).Google Scholar
  62. 62.
    S. Praetorius and A. Voigt, Macromol. Theory Simul. 20, 541 (2011).Google Scholar
  63. 63.
    S. Aland, J. Lowengrub, and A. Voigt, Phys. Fluids 23, 062103 (2011).Google Scholar
  64. 64.
    S. Aland, J. Lowengrub, and A. Voigt, Phys. Rev. E 86, 046321 (2012).Google Scholar
  65. 65.
    D. Kharchenko, V. Kharchenko, and I. Lysenko, Cent. Eur. J. Phys. 9, 698 (2011).Google Scholar
  66. 66.
    N. Faghihi, N. Provatas, K. Elder, M. Grant, and M. Karttunen, Phys. Rev. E 88, 032407 (2013).Google Scholar
  67. 67.
    B. Athreya (Doctor of Philosophy, University of Illinois at Urbana-Champaign, 2006).Google Scholar
  68. 68.
    N. Goldenfeld, B.P. Athreya, and J.A. Dantzig, Phys. Rev. E 72, 020601 (2005).Google Scholar
  69. 69.
    N. Goldenfeld, B.P. Athreya, and J.A. Dantzig, J. Stat. Phys. 125, 1019 (2006).MATHGoogle Scholar
  70. 70.
    B.P. Athreya, N. Goldenfeld, and J.A. Dantzig, Phys. Rev. E 74, 011601 (2006).Google Scholar
  71. 71.
    Y. Shiwa, Phys. Rev. E 79, 13601 (2009).Google Scholar
  72. 72.
    N. Goldenfeld, B.P. Athreya, and J.A. Dantzig, Phys. Rev. E 79, 013602 (2009).Google Scholar
  73. 73.
    B.P. Athreya, N. Goldenfeld, J.A. Dantzig, M. Greenwood, and N. Provatas, Phys. Rev. E 76, 056706 (2007).Google Scholar
  74. 74.
    D.-H. Yeon, Z.-F. Huang, K. Elder, and K. Thornton, Philos. Mag. 90, 237 (2010).Google Scholar
  75. 75.
    K. Elder, Z.-F. Huang, and N. Provatas, Phys. Rev. E 81, 011602 (2010).Google Scholar
  76. 76.
    Z.-F. Huang, K. Elder, and N. Provatas, Phys. Rev. E 82, 021605 (2010).Google Scholar
  77. 77.
    Y. Shiwa, Prog. Theor. Phys. 125, 871 (2011).MATHGoogle Scholar
  78. 78.
    Y. Oono and Y. Shiwa, Phys. Rev. E 86, 061138 (2012).Google Scholar
  79. 79.
    K. Elder and M. Grant, Phys. Rev. E 70, 051605 (2004).Google Scholar
  80. 80.
    R. Backofen, A. Rätz, and A. Voigt, Philos. Mag. Lett. 87, 813 (2007).Google Scholar
  81. 81.
    C. Wang and S.M. Wise, SIAM J Numer. Anal. 49, 945 (2011).MATHMathSciNetGoogle Scholar
  82. 82.
    Z. Hu, S. Wise, C. Wang, and J.S. Lowengrub, J. Comput. Phys. 228, 5323 (2009).MATHMathSciNetGoogle Scholar
  83. 83.
    A. Baskaran, Z. Hu, J.S. Lowengrub, C. Wang, S.M. Wise, and P. Zhou, J. Comput. Phys. 250, 270 (2013).MathSciNetGoogle Scholar
  84. 84.
    T. Hirouchi, T. Takaki, and Y. Tomita, Comput. Mater. Sci. 44, 1192 (2009).Google Scholar
  85. 85.
    V. Lebedev, A. Sysoeva, and P. Galenko, Phys. Rev. E 83, 026705 (2011).Google Scholar
  86. 86.
    M. Elsey and B. Wirth, ESAIM: Math. Model. Num. Anal. 47, 1413 (2013).MATHMathSciNetGoogle Scholar
  87. 87.
    P. Galenko and K. Elder, Phys. Rev. B 83, 064113 (2011).Google Scholar
  88. 88.
    M. Pierre and A. Rougirel, Math. Method Appl. Sci. 34, 278 (2011).MATHMathSciNetGoogle Scholar
  89. 89.
    C. Cheng, C. Zheng, Z. Jing, Y. Tao, and D. Xiu-Juan, Chin. Phys. B 21, 118103 (2012).Google Scholar
  90. 90.
    C. Chen, Z. Chen, J. Zhang, and X. Du, Sci. China Phys. Mech. Astr. 55, 2042 (2012).Google Scholar
  91. 91.
    P. Galenko, H. Gomez, N. Kropotin, and K. Elder, Phys. Rev. E 88, 013310 (2013).Google Scholar
  92. 92.
    Z. Zhang, Y. Ma, and Z. Qiao, J. Comput. Phys. (2013).Google Scholar
  93. 93.
    G. Schimperna and I. Pawlow, SIAM J. Math. Anal. 45, 31 (2013).MATHMathSciNetGoogle Scholar
  94. 94.
    M. Grasselli and H. Wu, Well-Posedness and Longtime Behavior for the Modified Phase-Field Crystal Equation (Ithaca, NY: Cornell University Library, 2013).Google Scholar
  95. 95.
    P.A. Vignal, N. Collier, and V.M. Calo, Procedia Comput. Sci. 18, 1614 (2013).Google Scholar
  96. 96.
    J. Hubert, M. Cheng, and H. Emmerich, J. Phys.: Condens. Matter 21, 464108 (2009).Google Scholar
  97. 97.
    R. Backofen and A. Voigt, J. Phys.: Condens. Matter 21, 464109 (2009).Google Scholar
  98. 98.
    A.J. Archer, M.J. Robbins, U. Thiele, and E. Knobloch, Phys. Rev. E 86, 031603 (2012).Google Scholar
  99. 99.
    R. Prieler, D. Li, and H. Emmerich, J. Cryst. Growth 312, 1434 (2010).Google Scholar
  100. 100.
    G. Tegze, G.I. Tóth, and L. Gránásy, Phys. Rev. Lett. 106, 195502 (2011).Google Scholar
  101. 101.
    M.A. Choudhary, D. Li, H. Emmerich, and H. Löwen, J. Phys.: Condens. Matter 23, 265005 (2011).Google Scholar
  102. 102.
    H. Emmerich, L. Gránásy, and H. Löwen, Eur. Phys. J. Plus 126, 1 (2011).Google Scholar
  103. 103.
    K.-A. Wu and P.W. Voorhees, Acta Mater. 60, 407 (2012).Google Scholar
  104. 104.
    N. Provatas, J. Dantzig, B. Athreya, P. Chan, P. Stefanovic, N. Goldenfeld, and K. Elder, JOM 59 (7), 83 (2007).Google Scholar
  105. 105.
    J. Berry, K. Elder, and M. Grant, Phys. Rev. E 77, 061506 (2008).Google Scholar
  106. 106.
    S. Tang, Z. Wang, Y. Guo, J. Wang, Y. Yu, and Y. Zhou, J. Cryst. Growth 374, 11 (2013).Google Scholar
  107. 107.
    R. Spatschek, A. Adland, and A. Karma, Phys. Rev. B 87, 024109 (2013).Google Scholar
  108. 108.
    S. Tang, R. Backofen, J. Wang, Y. Zhou, A. Voigt, and Y.-M. Yu, J. Cryst. Growth 334, 146 (2011).Google Scholar
  109. 109.
    S. Tang, Z. Wang, Y. Guo, J. Wang, Y. Yu, and Y. Zhou, Acta Mater. 60, 5501 (2012).Google Scholar
  110. 110.
    B.E. Warren, x-Ray Diffraction (Mineola, NY: Courier Dover Publications, 1969).Google Scholar
  111. 111.
    A. Jaatinen, C. Achim, K. Elder, and T. Ala-Nissila, Phys. Rev. E 80, 031602 (2009).Google Scholar
  112. 112.
    A. Jaatinen and T. Ala-Nissila, Phys. Rev. E 82, 061602 (2010).Google Scholar
  113. 113.
    B. Jelinek, S. Groh, M. Horstemeyer, J. Houze, S. Kim, G. Wagner, A. Moitra, and M. Baskes, Phys. Rev. B 85, 245102 (2012).Google Scholar
  114. 114.
    E. Asadi, M. Asle Zaeem, A. Moitra, and M.A. Tschopp, J. Phys.: Condens. Matter 26, 115404 (2014).Google Scholar
  115. 115.
    D. Sun, M. Asta, and J. Hoyt, Phys. Rev. B 69, 174103 (2004).Google Scholar
  116. 116.
    D. Turnbull, J. Appl. Phys. 21, 1022 (1950).Google Scholar
  117. 117.
    W. Tyson and W. Miller, Surf. Sci. 62, 267 (1977).Google Scholar
  118. 118.
    B. Radhakrishnan, S.B. Gorti, D.M. Nicholson, and J. Dantzig, J. Phys.: Conf. Series (Philadelphia, PA: IOP, 2012), p. 012043.Google Scholar
  119. 119.
    L. Granasy, G. Tegze, G.I. Tóth, and T. Pusztai, Philos. Mag. 91, 123 (2011).Google Scholar
  120. 120.
    A. Adland, A. Karma, R. Spatschek, D. Buta, and M. Asta, Phys. Rev. B 87, 024110 (2013).Google Scholar
  121. 121.
    Z. Trautt, A. Adland, A. Karma, and Y. Mishin, Acta Mater. 60, 6528 (2012).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2014

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringMissouri University of Science and TechnologyRollaUSA

Personalised recommendations