, Volume 66, Issue 9, pp 1930–1938 | Cite as

High-Temperature Compressive Properties of TiC-Added Mo-Si-B Alloys

  • Kyosuke YoshimiEmail author
  • Junya Nakamura
  • Daiki Kanekon
  • Shiho Yamamoto
  • Kouichi Maruyama
  • Hirokazu Katsui
  • Takashi Goto


High-temperature compressive properties of two TiC-added Mo-Si-B alloys with nominal compositions of Mo-5Si-10B-7.5TiC (70Mo alloy) and Mo-6.7Si-13.3B-7.5TiC (65Mo alloy) (at.%) were investigated. The alloys were composed of four constituent phases: Mo solid solution (Moss), Mo5SiB2, (Mo,Ti)C, and (Mo,Ti)2C. The primary phases of the 70Mo and 65Mo alloys were Moss and T2, respectively. The compressive deformability of the 65Mo alloy was significantly limited even at 1600°C because of the elongated, coarse primary T2 phase, whereas the 70Mo alloy had good compressive deformability and a high strength in the test-temperature range of 1000–1600°C; the peak stresses were 1800 MPa at 1000°C, 1230 MPa at 1200°C, and 350 MPa at 1600°C. At and above 1200°C, the peak stress values were more than double those of Mo-6.7Si-7.9B, Ti-Zr-Mo, and Mo-Hf-C alloys. The plastic strain in the 70Mo alloy at temperatures lower than the ductile–brittle transition temperature of T2 was generated by plastic deformation of not only Moss but also of (Mo,Ti)C and (Mo,Ti)2C. This work indicates that (Mo,Ti)C and (Mo,Ti)2C play an important role in determining the high-temperature strength and deformation properties of TiC-added Mo-Si-B alloys.


Peak Stress 70Mo Alloy Brittle Transition Temperature Compressive Deformability Mo2C Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the funding program for Next Generation World-Leading Researchers (NEXT Program) (No. GR017) and the Advanced Low Carbon Technology Research and Development Program (ALCA) of the Japan Science and Technology Agency (JST).


  1. 1.
    D.M. Dimiduk and J.H. Perepezko, MRS Bull. 28, 639 (2003).CrossRefGoogle Scholar
  2. 2.
    R. Mitra, Int. Mater. Rev. 51, 13 (2006).CrossRefGoogle Scholar
  3. 3.
    P. Jain and K.S. Kumar, Acta Mater. 58, 2124 (2010).CrossRefGoogle Scholar
  4. 4.
    K. Ito, K. Ihara, K. Tanaka, M. Fujikura, and M. Yamaguchi, Intermetallics 9, 591 (2001).CrossRefGoogle Scholar
  5. 5.
    K. Yoshimi, S. Nakatani, N. Nomura, and S. Hanada, Intermetallics 11, 787 (2003).CrossRefGoogle Scholar
  6. 6.
    D.A. Helmick, G.H. Meier, and F.S. Pettit, Metall. Mater. Trans. A 36A, 3371 (2005).CrossRefGoogle Scholar
  7. 7.
    J.A. Lemberg and R.O. Ritchie, Adv. Mater. 24, 3445 (2012).CrossRefGoogle Scholar
  8. 8.
    J.J. Kruzic, J.H. Schneibel, and R.O. Ritchie, Metall. Mater. Trans. A 36A, 2393 (2005).CrossRefGoogle Scholar
  9. 9.
    R. Sakidja and J.H. Perepezko, Metall. Mater. Trans. A 36A, 507 (2005).CrossRefGoogle Scholar
  10. 10.
    R. Sakidja, J.H. Perepezko, S. Kim, and N. Sekido, Acta Mater. 56, 5223 (2008).CrossRefGoogle Scholar
  11. 11.
    J.H. Perepezko and R. Sakidja, JOM 65, 307 (2013).CrossRefGoogle Scholar
  12. 12.
    Y. Yang, Y.A. Chang, L. Tan, and W. Cao, Acta Mater. 53, 1711 (2005).CrossRefGoogle Scholar
  13. 13.
    Y. Yang, H. Bei, J. Tiley, and E.P. George, J. Alloys Compd. 556, 32 (2013).CrossRefGoogle Scholar
  14. 14.
    M. Krüger, D. Schliephake, P. Jain, K.S. Kumar, G. Schumacher, and M. Heilmaier, JOM 65, 301 (2013).CrossRefGoogle Scholar
  15. 15.
    S. Majumdar, D. Schliephake, B. Gorr, H.-J. Christ, and M. Heilmaier, Metall. Mater. Trans. A 44A, 2243 (2013).CrossRefGoogle Scholar
  16. 16.
    D. Schliephake, M. Azim, K.V. Klinski-Wetzel, B. Gorr, H.-J. Christ, H. Bei, E.P. George, and M. Heilmaier, Metall. Mater. Trans. A 45A, 1102 (2014).CrossRefGoogle Scholar
  17. 17.
    S. Miyamoto, K. Yoshimi, S.-H. Ha, T. Kaneko, J. Nakamura, T. Sato, K. Maruyama, R. Tu, and T. Goto, Metall. Mater. Trans. A 45A, 1112 (2014).CrossRefGoogle Scholar
  18. 18.
    A.P. Alur, N. Chollacoop, and K.S. Kumar, Acta Mater. 52, 5571 (2004).CrossRefGoogle Scholar
  19. 19.
    P. Villars and L.D. Calvert, eds., Pearson’s Handbook of Crystallographic Data for Intermetallic Phases, 2nd ed., Vol. 2 (Materials Park, OH: ASM International, 1991), pp. 1950–1952.Google Scholar
  20. 20.
    S. Tsurekawa, H. Kurishita, and H. Yoshinaga, J. Nucl. Mater. 169, 291 (1989).CrossRefGoogle Scholar
  21. 21.
    H. Kurishita, R. Matsubara, J. Shiraishi, and H. Yoshinaga, J. Jpn. Inst. Met. 49, 1064 (1985).Google Scholar
  22. 22.
    S. Tsurekawa, M. Nakashima, and H. Yoshinaga, J. Jpn. Inst. Met. 58, 994 (1994).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2014

Authors and Affiliations

  • Kyosuke Yoshimi
    • 1
    Email author
  • Junya Nakamura
    • 1
  • Daiki Kanekon
    • 1
  • Shiho Yamamoto
    • 1
  • Kouichi Maruyama
    • 1
  • Hirokazu Katsui
    • 2
  • Takashi Goto
    • 2
  1. 1.Department of Materials Science, Graduate School of EngineeringTohoku UniversitySendaiJapan
  2. 2.Institute for Materials ResearchTohoku UniversitySendaiJapan

Personalised recommendations