, Volume 66, Issue 10, pp 2030–2042 | Cite as

Microstructure and Properties of Aluminum-Containing Refractory High-Entropy Alloys

  • O. N. Senkov
  • C. Woodward
  • D. B. Miracle


A new metallurgical strategy, high-entropy alloying (HEA), was used to explore new composition and phase spaces in the development of new refractory alloys with reduced densities and improved properties. Combining Mo, Ta, and Hf with “low-density” refractory elements (Nb, V, and Zr) and with Ti and Al produced six new refractory HEAs with densities ranging from 6.9 g/cm3 to 9.1 g/cm3. Three alloys have single-phase disordered body-centered cubic (bcc) crystal structures and three other alloys contain two bcc nanophases with very close lattice parameters. The alloys have high hardness, in the range from H v = 4.0 GPa to 5.8 GPa, and compression yield strength, σ 0.2 = 1280 MPa to 2035 MPa, depending on the composition. Some of these refractory HEAs show considerably improved high temperature strengths relative to advanced Ni-based superalloys. Compressive ductility of all the alloys is limited at room temperature, but it improves significantly at 800°C and 1000°C.


Intermetallic Phasis Atomic Radius Lave Phase TiZr Refractory Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Discussions with Drs. D. Dimiduk, H. Fraser, J. Miller, J. Tiley, S.L. Semiatin, and G. Viswanathan are appreciated. This work was supported through the Air Force Research Laboratory Director’s fund and through the Air Force on-site contract no. FA8650-10-D-5226 operated by UES, Inc., Dayton, OH.


  1. 1.
    O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, and P.K. Liaw, Intermetallics 18, 1758 (2010).CrossRefGoogle Scholar
  2. 2.
    O.N. Senkov, G.B. Wilks, J.M. Scott, and D.B. Miracle, Intermetallics 19, 698 (2011).CrossRefGoogle Scholar
  3. 3.
    O.N. Senkov, J.M. Scott, S.V. Senkova, D.B. Miracle, and C.F. Woodward, J. Alloy Compd. 509, 6043 (2011).CrossRefGoogle Scholar
  4. 4.
    O.N. Senkov, J.M. Scott, S.V. Senkova, F. Meisenkothen, D.B. Miracle, and C.F. Woodward, J. Mater. Sci. 47, 4062 (2012).CrossRefGoogle Scholar
  5. 5.
    O.N. Senkov and C.F. Woodward, Mater. Sci. Eng. A 529, 311 (2011).CrossRefGoogle Scholar
  6. 6.
    O.N. Senkov, S.V. Senkova, D.M. Dimiduk, C. Woodward, and D.B. Miracle, J. Mater. Sci. 47, 6522 (2012).CrossRefGoogle Scholar
  7. 7.
    O.N. Senkov, S.V. Senkova, C. Woodward, and D.B. Miracle, Acta Mater. 61, 1545 (2013).CrossRefGoogle Scholar
  8. 8.
    O.N. Senkov, S.V. Senkova, D.B. Miracle, and C.F. Woodward, Mater. Sci. Eng. A 565, 51 (2013).CrossRefGoogle Scholar
  9. 9.
    J.K. Tien and T. Caulfield, Superalloys, Supercomposites and Superceramics (London, U.K.: Academic Press, 1989).Google Scholar
  10. 10.
    G. Krauss, Steels: Processing, Structure and Performance (Materials Park, OH: ASM International, 2005).Google Scholar
  11. 11.
    M. Gurram, K. Adepu, R.R. Pinninti, and M.R. Gankidi, J. Mater. Res. Technol. 2, 238 (2013).CrossRefGoogle Scholar
  12. 12.
    J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Adv. Eng. Mater. 6, 299 (2004).CrossRefGoogle Scholar
  13. 13.
    J.W. Yeh, Ann. Chim: Sci. Mater. 31, 633 (2006).CrossRefGoogle Scholar
  14. 14.
    J.W. Yeh, Y.L. Chen, S.J. Lin, and S.K. Chen, Mater. Sci. Forum 560, 1 (2007).CrossRefGoogle Scholar
  15. 15.
    Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, and P.K. Liaw, Adv. Eng. Mater. 10, 534 (2008).CrossRefGoogle Scholar
  16. 16.
    Y. Zhang, X. Yang, and P.K. Liaw, JOM 64, 830 (2012).CrossRefGoogle Scholar
  17. 17.
    M.Y. Demeri, Advanced High Strength Steels (Materials Park, OH: ASM International, 2013).Google Scholar
  18. 18.
    Inconel Alloy 718. Accessed 21 July 2014.
  19. 19.
    M. Kaufman, Superalloys-84 (Fifth International Symposium), (Warrendale, PA: TMS, 1984) pp. 43–52.Google Scholar
  20. 20.
    J.R. Kattus, Aerospace Structural Metals Handbook, Mar-M247 (West Lafayette, IN: Purdue Research Foundation, 1999), pp. 1–8.Google Scholar
  21. 21.
    D.E. Newbury, D.C. Joy, P. Echlin, C.E. Fiori, and J.I. Goldstein, Advanced Scanning Electron Microscopy and X-ray Microanalysis (New York: Plenum Press, 1986).CrossRefGoogle Scholar
  22. 22.
    O.N. Senkov, S.V. Senkova, and C. Woodward, Acta Mater. 68, 214 (2014).CrossRefGoogle Scholar
  23. 23.
    F. Stein, M. Plam, and G. Sauthoff, Intermetallics 12, 713 (2004).CrossRefGoogle Scholar
  24. 24.
    T.B. Massalski and H. Okamoto, Binary Alloy Phase Diagrams, 2nd ed. (Materials Park, OH: ASM International, 1990).Google Scholar
  25. 25.
    Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, and P.K. Liaw, Adv. Eng. Mater. 10, 534 (2008).CrossRefGoogle Scholar
  26. 26.
    Y. Zhang, X. Yang, and P.K. Liaw, JOM 64, 830 (2012).CrossRefGoogle Scholar
  27. 27.
    Y. Zhang and Y.J. Zhou, Mater. Sci. Forum 561–565, 1337 (2007).CrossRefGoogle Scholar
  28. 28.
    S. Guo and C.T. Liu, Progr. Nat. Sci. Mater. Int. 21, 433 (2011).CrossRefGoogle Scholar
  29. 29.
    X. Yang and Y. Zhang, Mater. Chem. Phys. 132, 233 (2012).CrossRefGoogle Scholar
  30. 30.
    A. Takeuchi and A. Inoue, Intermetallics 18, 1779 (2010).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society (outside the USA) 2014

Authors and Affiliations

  1. 1.Air Force Research LaboratoryMaterials and Manufacturing DirectorateWright-Patterson AFBUSA

Personalised recommendations