Advertisement

JOM

, Volume 66, Issue 8, pp 1383–1389 | Cite as

Grain Boundary Contributions to Hydrogen-Affected Plasticity in Ni-201

  • Samantha K. Lawrence
  • Brian P. Somerday
  • Neville R. Moody
  • David F. Bahr
Article

Abstract

Hydrogen embrittlement of structural materials, such as nickel-based alloys, is often characterized by enhanced dislocation processes as well as grain boundary decohesion leading to macroscale intergranular fracture. Nanoindentation and scanning probe microscopy (SPM) were used to characterize slip transfer across random grain boundaries and Σ3 recrystallization twins in annealed Ni-201. Thermal hydrogen charging leads to an increase in slip step width within pileups produced by nanoindentation along grain boundaries. The likelihood of slip transmission in the presence of hydrogen depends on the ease of slip within adjacent grains as well as on the misorientation of the grain boundary between them. The observed changes suggest that hydrogen limits dislocation cross-slip while increasing overall dislocation mobility. Coupled nanoindentation and SPM investigations provide a unique, local method for analyzing hydrogen effects on dislocation plasticity, which will be useful in developing grain-boundary-engineered materials.

Keywords

Plastic Zone Hydrogen Embrittlement Intergranular Fracture Hydrogen Charge Slip Step 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was supported by the Stewardship Science Graduate Fellowship Program under grant number DE-FC52-08NA28752 (to S.K.L.). Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. The authors would like to thank J.A. Campbell for assistance with hydrogen charging.

References

  1. 1.
    H.K. Birnbaum, MRS Bull. 28, 479 (2003).CrossRefGoogle Scholar
  2. 2.
    W. Gerberich, Gaseous Hydrogen Embrittlement of Materials in Energy Technologies, ed. R.P. Gangloff and B.P. Somerday (Philadelphia, PA: Woodhead, 2012), pp. 209–46.Google Scholar
  3. 3.
    A. Kimura and H.K. Birnbaum, Acta Metall. 36, 757 (1988).CrossRefGoogle Scholar
  4. 4.
    J. Kameda and C.J. McMahon, Metall. Mater. Trans. A 11, 91 (1980).Google Scholar
  5. 5.
    T. Takeda and C.J. McMahon, Metall. Mater. Trans. A 12, 1255 (1981).CrossRefGoogle Scholar
  6. 6.
    W.W. Gerberich and Y.T. Chen, Metall. Trans. A 6, 271 (1975).CrossRefGoogle Scholar
  7. 7.
    R.P. Gangloff, Comprehensive Structural Integrity, ed. I. Milne, R.O. Ritchie, and B. Karihaloo (New York: Elsevier Science, 2003), pp. 31–101.Google Scholar
  8. 8.
    N.A. Fleck, G.M. Muller, M.F. Ashby, and J.W. Hutchinson, Acta Met. Mater. 42, 475 (1994).CrossRefGoogle Scholar
  9. 9.
    N.R. Moody, M.W. Perra, and S.L. Robinson, Scripta Metall. 22, 1261 (1988).CrossRefGoogle Scholar
  10. 10.
    C.J. McMahon, Eng. Fract. Mech. 68, 773 (2001).CrossRefGoogle Scholar
  11. 11.
    S.M. Bruemmer, R.H. Jones, M.T. Thomas, and D.R. Baer, Metall. Mater. Trans. A 14, 223 (1983).CrossRefGoogle Scholar
  12. 12.
    R.H. Jones, S.M. Bruemmer, M.T. Thomas, and D.R. Baer, Metall. Mater. Trans. A 14, 1729 (1983).CrossRefGoogle Scholar
  13. 13.
    M. Wada, N. Akaiwa, and T. Mori, Philos. Mag. A 55, 389 (1987).CrossRefGoogle Scholar
  14. 14.
    A. Van der Ven and G. Ceder, Acta Mater. 52, 1223 (2004).CrossRefGoogle Scholar
  15. 15.
    M. Dadfarnia, P. Novak, D.C. Ahn, J.B. Liu, P. Sofronis, D.D. Johnson, and I.M. Robertson, Adv. Mater. 22, 1128 (2010).CrossRefGoogle Scholar
  16. 16.
    H.K. Birnbaum and P. Sofronis, Mater. Sci. Eng. A 176, 191 (1994).CrossRefGoogle Scholar
  17. 17.
    Y. Jagodzinski, H. Hanninen, O. Tarasenko, and S. Smuk, Scripta Mater. 43, 245 (2000).CrossRefGoogle Scholar
  18. 18.
    A.H. Cottrell and B.A. Bilby, Proc. Phys. Soc. 62, 49 (1949).CrossRefGoogle Scholar
  19. 19.
    P. Sofronis and H.K. Birnbaum, J. Mech. Phys. Solids 43, 49 (1995).CrossRefzbMATHGoogle Scholar
  20. 20.
    E. Sirois and H.K. Birnbaum, Acta Metall. 40, 1377 (1992).CrossRefGoogle Scholar
  21. 21.
    I.M. Robertson, M.L. Martin, and J.A. Fenske, Gaseous Hydrogen Embrittlement of Materials in Energy Technologies, ed. R.P. Gangloff and B.P. Somerday (Philadelphia, PA: Woodhead, 2012), pp. 166–206.Google Scholar
  22. 22.
    T. Tabata and H.K. Birnbaum, Scripta Metall. 17, 947 (1983).CrossRefGoogle Scholar
  23. 23.
    I.M. Robertson and H.K. Birnbaum, Acta Metall. 34, 353 (1986).CrossRefGoogle Scholar
  24. 24.
    M.L. Martin, B.P. Somerday, R.O. Ritchie, P. Sofronis, and I.M. Robertson, Acta Mater. 60, 2739 (2012).CrossRefGoogle Scholar
  25. 25.
    T. Matsumoto, J. Eastman, and H.K. Birnbaum, Scripta Metall. 15, 1033 (1981).CrossRefGoogle Scholar
  26. 26.
    G.M. Bond, I.M. Robertson, and H.K. Birnbaum, Acta Metall. 36, 2193 (1988).CrossRefGoogle Scholar
  27. 27.
    I.M. Robertson, Eng. Fract. Mech. 64, 649 (1999).CrossRefGoogle Scholar
  28. 28.
    S. Bechtle, M. Kumar, B.P. Somerday, M.E. Launey, and R.O. Ritchie, Acta Mater. 57, 4148 (2009).CrossRefGoogle Scholar
  29. 29.
    A. Barnoush and H. Vehoff, Acta Mater. 58, 5274 (2010).CrossRefGoogle Scholar
  30. 30.
    A. Barnoush and H. Vehoff, Scripta Mater. 58, 747 (2008).CrossRefGoogle Scholar
  31. 31.
    A. Barnoush, B. Yang, and H. Vehoff, Adv. Solid State Phys. 47, 253 (2008).CrossRefGoogle Scholar
  32. 32.
    A. Barnoush, M. Asgari, and R. Johnsen, Scripta Mater. 66, 414 (2012).CrossRefGoogle Scholar
  33. 33.
    N. Kheradmand, J. Dake, and A. Barnoush, Philos. Mag. 92, 3216 (2012).CrossRefGoogle Scholar
  34. 34.
    R.H. Jones, S.M. Bruemmer, M.T. Thomas, and D.R. Baer, Metall. Trans. A 13, 241 (1982).CrossRefGoogle Scholar
  35. 35.
    C.B. Carter and S.M. Holmes, Philos. Mag. 35, 1161 (1977).CrossRefGoogle Scholar
  36. 36.
    N.A. Stelmashenko, M.G. Walls, L.M. Brown, and YuV Milman, Acta Metall. Mater. 41, 2855 (1993).CrossRefGoogle Scholar
  37. 37.
    K.A. Nibur and D.F. Bahr, Scripta Mater. 49, 1055 (2003).CrossRefGoogle Scholar
  38. 38.
    L.E. Samuels and T.O. Mulhearn, J. Mech. Phys. Solids 5, 125 (1957).CrossRefGoogle Scholar
  39. 39.
    M. Munawar Chaudhri, Philos. Mag. A 74, 1213 (1996).CrossRefGoogle Scholar
  40. 40.
    M.D. Sangid, T. Ezaz, H. Sehitoglu, and I.M. Robertson, Acta Mater. 59, 283 (2011).CrossRefGoogle Scholar
  41. 41.
    T.C. Lee, I.M. Robertson, and H.K. Birnbaum, Metall. Trans. A 21, 2437 (1990).CrossRefGoogle Scholar
  42. 42.
    L.C. Lim and R. Raj, Acta Metall. 33, 1577 (1985).CrossRefGoogle Scholar
  43. 43.
    N. Kheradmand, H. Vehoff, and A. Barnoush, Acta Mater. 61, 7454 (2013).CrossRefGoogle Scholar
  44. 44.
    N. Kheradmand and H. Vehoff, Adv. Eng. Mater. 14, 153 (2012).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2014

Authors and Affiliations

  • Samantha K. Lawrence
    • 1
  • Brian P. Somerday
    • 2
  • Neville R. Moody
    • 2
  • David F. Bahr
    • 1
  1. 1.School of Materials EngineeringPurdue UniversityWest LafayetteUSA
  2. 2.Sandia National LaboratoriesLivermoreUSA

Personalised recommendations