, Volume 66, Issue 8, pp 1520–1528 | Cite as

Phase-Field Modeling of Nucleation in Solid-State Phase Transformations

  • Tae Wook HeoEmail author
  • Long-Qing Chen


Nucleation is a critically important process as the rate of nucleation determines the number density of new phase particles and thus microstructures of a material during phase transformations. Predicting and controlling nucleation rates in solids is one of the grand challenges in materials science because the spatial scale involved in nucleation is at the atomic/nanoscale, the rate of nucleation process is extremely temperature sensitive, and the morphology of a critical nucleus can be highly nonspherical and complex. In this article, we briefly review the recent advances in modeling and predicting nucleation during solid-phase transformations based on the diffuse-interface or nonclassical description of critical nucleus profiles. The focus is on predicting the critical nucleus morphology and nucleation free energy barrier under the influence of anisotropic interfacial energy and elastic interactions. Incorporation of nucleation events in phase-field modeling of solid-to-solid phase transformations and microstructure evolution is also discussed.


Parent Phase Critical Nucleus Nucleate Particle Classical Nucleation Theory Bulk Free Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The work of T.W. Heo was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This work was funded by the Laboratory Directed Research and Development Program at LLNL under project tracking code 12-ERD-053. L.Q. Chen acknowledges the financial support by NSF under CMMI-1235092 and DOE Basic Sciences under the CMCSN Program. We acknowledge the figure permissions from the American Physical Society, Elsevier, Springer, Global Science Press, Taylor & Francis, IOP Publishing, and Dr. L. Zhang.


  1. 1.
    D.W. Oxtoby, J. Phys.-Condens. Mater. 4, 7627 (1992).CrossRefGoogle Scholar
  2. 2.
    D.W. Oxtoby, Acc. Chem. Res. 31, 91 (1998).CrossRefGoogle Scholar
  3. 3.
    J.D. Gunton, J. Stat. Phys. 95, 903 (1999).CrossRefzbMATHGoogle Scholar
  4. 4.
    L. Granasy and P.F. James, J. Non-Cryst. Solids 253, 210 (1999).CrossRefGoogle Scholar
  5. 5.
    D.T. Wu, L. Granasy, and F. Spaepen, MRS Bull. 29, 945 (2004).CrossRefGoogle Scholar
  6. 6.
    L.Q. Chen, Ann. Rev. Mater. Res. 32, 113 (2002).CrossRefGoogle Scholar
  7. 7.
    W.J. Boettinger, J.A. Warren, C. Beckermann, and A. Karma, Ann. Rev. Mater. Res. 32, 163 (2002).CrossRefGoogle Scholar
  8. 8.
    L. Granasy, T. Pusztai, T. Borzsonyi, G. Toth, G. Tegze, J.A. Warren, and J.F. Douglas, J. Mater. Res. 21, 309 (2006).CrossRefGoogle Scholar
  9. 9.
    H. Emmerich, Adv. Phys. 57, 1 (2008).CrossRefGoogle Scholar
  10. 10.
    N. Moelans, B. Blanpain, and P. Wollants, CALPHAD 32, 268 (2008).CrossRefGoogle Scholar
  11. 11.
    I. Steinbach, Model. Simul. Mater. Sci. 17, 073001 (2009).CrossRefMathSciNetGoogle Scholar
  12. 12.
    J.W. Cahn and J.E. Hilliard, J. Chem. Phys. 31, 688 (1959).CrossRefGoogle Scholar
  13. 13.
    J.W. Cahn and J.E. Hilliard, J. Chem. Phys. 28, 258 (1958).CrossRefGoogle Scholar
  14. 14.
    R. Poduri and L.Q. Chen, Acta Mater. 44, 4253 (1996).CrossRefGoogle Scholar
  15. 15.
    L. Granasy, T. Borzsonyi, and T. Pusztai, Phys. Rev. Lett. 88, 206105 (2002).CrossRefGoogle Scholar
  16. 16.
    L. Granasy, T. Pusztai, D. Saylor, and J.A. Warren, Phys. Rev. Lett. 98, 035703 (2007).CrossRefGoogle Scholar
  17. 17.
    T. Pusztai, G. Tegze, G.I. Toth, L. Kornyei, G. Bansel, Z.Y. Fan, and L. Granasy, J. Phys.-Condens. Mater. 20, 404205 (2008).Google Scholar
  18. 18.
    A. Roy, J.M. Rickman, J.D. Gunton, and K.R. Elder, Phys. Rev. E 57, 2610 (1998).CrossRefGoogle Scholar
  19. 19.
    Y.A. Chu, B. Moran, A.C.E. Reid, and G.B. Olson, Metall. Mater. Trans. A 31, 1321 (2000).CrossRefGoogle Scholar
  20. 20.
    R. Kubo, Rep. Prog. Phys. 29, 255 (1966).CrossRefGoogle Scholar
  21. 21.
    E.M. Lifshitz and L.P. Pitaevskii, Statistical Physics, Part I, Landau and Lifshitz Course of Theoretical Physics (Oxford, U.K.: Pergamon Press, 1980).Google Scholar
  22. 22.
    J.P. Simmons, C. Shen, and Y. Wang, Scripta Mater. 43, 935 (2000).CrossRefGoogle Scholar
  23. 23.
    J.P. Simmons, C. Shen, and Y. Wang (Paper presented at the Materials Research Society Symposium Proceedings, 2000, Vol. 580), p. 417.Google Scholar
  24. 24.
    J.P. Simmons, Y.H. Wen, C. Shen, and Y.Z. Wang, Mater. Sci. Eng. A 365, 136 (2004).CrossRefGoogle Scholar
  25. 25.
    D.A. Porter and K.E. Easterling, Phase Transformations in Metals and Alloys (London, U.K.: Chapman & Hall, 1992).CrossRefGoogle Scholar
  26. 26.
    H.I. Aaronson and J.K. Lee, Lectures on the Theory of Phase Transformations (New York: TMS, 1975).Google Scholar
  27. 27.
    E. Wigner, Trans. Faraday Soc. 34, 0029 (1938).CrossRefGoogle Scholar
  28. 28.
    P. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations (Providence, RI: American Mathematical Society, 1986).Google Scholar
  29. 29.
    J.J. More and T.S. Munson, Math. Program. 100, 151 (2004).CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    E. Weinan, W.Q. Ren, and E. Vanden-Eijnden, Phy. Rev. B 66, 052301 (2002).Google Scholar
  31. 31.
    E.W. Ren and E. Vanden-Eijnden, J. Chem. Phys. 126, 164103 (2007).CrossRefGoogle Scholar
  32. 32.
    Q. Du and L. Zhang, Commun. Math. Sci. 7, 1039 (2009).CrossRefzbMATHMathSciNetGoogle Scholar
  33. 33.
    L. Zhang, L.-Q. Chen, and Q. Du, Commun. Comput. Phys. 7, 674 (2010).Google Scholar
  34. 34.
    G. Henkelman and H. Jonsson, J. Chem. Phys. 113, 9978 (2000).CrossRefGoogle Scholar
  35. 35.
    G. Henkelman, B.P. Uberuaga, and H. Jonsson, J. Chem. Phys. 113, 9901 (2000).CrossRefGoogle Scholar
  36. 36.
    T. Zhu, J. Li, A. Samanta, H.G. Kim, and S. Suresh, Proc. Natl. Acad. Sci. USA 104, 3031 (2007).CrossRefGoogle Scholar
  37. 37.
    G. Henkelman and H. Jonsson, J. Chem. Phys. 111, 7010 (1999).CrossRefGoogle Scholar
  38. 38.
    J. Zhang and Q. Du, SIAM J. Numer. Anal. 50, 1899 (2012).CrossRefzbMATHMathSciNetGoogle Scholar
  39. 39.
    J. Zhang and Q. Du, J. Comput. Phys. 231, 4745 (2012).CrossRefzbMATHMathSciNetGoogle Scholar
  40. 40.
    L. Zhang, L.-Q. Chen, and Q. Du, Phys. Rev. Lett. 98, 265703 (2007).CrossRefGoogle Scholar
  41. 41.
    L. Zhang, L.-Q. Chen, and Q. Du, Acta Mater. 56, 3568 (2008).CrossRefGoogle Scholar
  42. 42.
    L. Zhang, L.-Q. Chen, and Q. Du, J. Sci. Comput. 37, 89 (2008).CrossRefzbMATHMathSciNetGoogle Scholar
  43. 43.
    C. Shen, J. Li, and Y.Z. Wang, Metall. Mater. Trans. A 39A, 976 (2008).CrossRefGoogle Scholar
  44. 44.
    L. Zhang, L.-Q. Chen, and Q. Du, J. Comput. Phys. 229, 6574 (2010).CrossRefzbMATHMathSciNetGoogle Scholar
  45. 45.
    J.W. Cahn, Acta Metall. 9, 795 (1961).CrossRefGoogle Scholar
  46. 46.
    S.M. Allen and J.W. Cahn, Acta Metall. 27, 1085 (1979).CrossRefGoogle Scholar
  47. 47.
    V. Vaithyanathan and L.Q. Chen, Acta Mater. 50, 4061 (2002).CrossRefGoogle Scholar
  48. 48.
    T.W. Heo, S. Bhattacharyya, and L.Q. Chen, Philos. Mag. 93, 1468 (2013).CrossRefGoogle Scholar
  49. 49.
    T.W. Heo, L. Zhang, Q. Du, and L.-Q. Chen, Scripta Mater. 63, 8 (2010).CrossRefGoogle Scholar
  50. 50.
    C. Shen, J.P. Simmons, and Y. Wang, Acta Mater. 54, 5617 (2006).CrossRefGoogle Scholar
  51. 51.
    C. Shen, J.P. Simmons, and Y. Wang, Acta Mater. 55, 1457 (2007).CrossRefGoogle Scholar
  52. 52.
    L. Zhang (Ph.D. Dissertation, The Pennsylvania State University, 2009).Google Scholar
  53. 53.
    Y. Li, S. Hu, L. Zhang, and X. Sun, Model. Simul. Mater. Sci. 22, 025002 (2014).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2014

Authors and Affiliations

  1. 1.Condensed Matter and Materials DivisionLawrence Livermore National LaboratoryLivermoreUSA
  2. 2.Department of Materials Science and EngineeringThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations