Advertisement

JOM

, Volume 66, Issue 9, pp 1845–1856 | Cite as

Alloy Design, Combinatorial Synthesis, and Microstructure–Property Relations for Low-Density Fe-Mn-Al-C Austenitic Steels

  • D. RaabeEmail author
  • H. Springer
  • I. Gutierrez-Urrutia
  • F. Roters
  • M. Bausch
  • J. -B. Seol
  • M. Koyama
  • P. -P. Choi
  • K. Tsuzaki
Article

Abstract

We present recent developments in the field of austenitic steels with up to 18% reduced mass density. The alloys are based on the Fe-Mn-Al-C system. Here, two steel types are addressed. The first one is a class of low-density twinning-induced plasticity or single phase austenitic TWIP (SIMPLEX) steels with 25–30 wt.% Mn and <4–5 wt.% Al or even <8 wt.% Al when naturally aged. The second one is a class of κ-carbide strengthened austenitic steels with even higher Al content. Here, κ-carbides form either at 500–600°C or even during quenching for >10 wt.% Al. Three topics are addressed in more detail, namely, the combinatorial bulk high-throughput design of a wide range of corresponding alloy variants, the development of microstructure–property relations for such steels, and their susceptibility to hydrogen embrittlement.

Keywords

Dislocation Density Stack Fault Energy Hydrogen Embrittlement Partial Dislocation TWIP Steel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors are deeply indebted to the late Professor Georg Frommeyer for his guidance in designing low-density steels. Some of the data shown in Figs. 1 and 2 stem from his work.

References

  1. 1.
    J.G. Speer, D.K. Matlock, B.C. De Cooman, and J.G. Schroth, Acta Mater. 51, 2611 (2003).CrossRefGoogle Scholar
  2. 2.
    D. Barbier, N. Gey, S. Allain, N. Bozzolo, and M. Humbert, Mater. Sci. Eng. A 500, 196 (2009).CrossRefGoogle Scholar
  3. 3.
    F.G. Caballero and H.K.D.H. Bhadeshia, Curr. Opin. Solid State Mater. Sci. 8, 251 (2004).CrossRefGoogle Scholar
  4. 4.
    M. Calcagnotto, Y. Adachi, D. Ponge, and D. Raabe, Acta Mater. 59, 658 (2011).CrossRefGoogle Scholar
  5. 5.
    R. Song, D. Ponge, D. Raabe, J.G. Speer, and D.K. Matlock, Mater. Sci. Eng. A 441, 1 (2006).CrossRefGoogle Scholar
  6. 6.
    B.C. De Cooman, O. Kwon, and K.G. Chin, J. Mater. Sci. Technol. 28, 513 (2012).CrossRefGoogle Scholar
  7. 7.
    M. Calcagnotto, D. Ponge, and D. Raabe, ISIJ Int. 48, 1096 (2008).CrossRefGoogle Scholar
  8. 8.
    R. Song, D. Ponge, and D. Raabe, Acta Mater. 53, 4881 (2005).CrossRefGoogle Scholar
  9. 9.
    Y. Sakuma, O. Matsumura, and O. Akisue, ISIJ Int. 31, 1348 (1991).CrossRefGoogle Scholar
  10. 10.
    B.C. De Cooman and J.G. Speer, Steel Res. Int. 77, 634 (2006).Google Scholar
  11. 11.
    Y. Toji, H. Matsuda, M. Herbig, P.-P. Choi, and D. Raabe, Acta Mater. 65, 215 (2014).CrossRefGoogle Scholar
  12. 12.
    F.G. Caballero, H.K.D.H. Bhadeshia, J.A. Mawella, D.G. Jones, and P. Brown, Mater. Sci. Technol. 17, 517 (2001).CrossRefGoogle Scholar
  13. 13.
    D. Raabe, S. Sandlöbes, J. Millán, D. Ponge, H. Assadi, M. Herbig, and P.P. Choi, Acta Mater. 61, 6132 (2013).CrossRefGoogle Scholar
  14. 14.
    D. Raabe, D. Ponge, O. Dmitrieva, and B. Sander, Scripta Mater. 60, 1141 (2009).CrossRefGoogle Scholar
  15. 15.
    L. Yuan, D. Ponge, J. Wittig, P.P. Choi, J.A. Jiminez, and D. Raabe, Acta Mater. 60, 2790 (2012).CrossRefGoogle Scholar
  16. 16.
    O. Grässel, L. Krüger, G. Frommeyer, and L.W. Meyer, Int. J. Plast. 16, 1391 (2000).CrossRefzbMATHGoogle Scholar
  17. 17.
    G. Frommeyer, U. Brüx, and P. Neumann, ISIJ Int. 43, 438 (2003).CrossRefGoogle Scholar
  18. 18.
    G. Frommeyer and U. Brüx, Steel Res. Int. 77, 627 (2006).Google Scholar
  19. 19.
    O. Bouaziz, S. Allain, C.P. Scott, P. Cugy, and D. Barbier, Curr. Opin. Solid State Mater. Sci. 15, 141 (2011).CrossRefGoogle Scholar
  20. 20.
    A. Saeed-Akbari, L. Mosecker, A. Schwedt, and W. Bleck, Metall. Mater. Trans. A 43, 1688 (2012).CrossRefGoogle Scholar
  21. 21.
    J.E. Jin and Y.K. Lee, Mater. Sci. Eng. A 527, 157 (2009).CrossRefGoogle Scholar
  22. 22.
    J.K. Kim, L. Chen, H.S. Kim, S.K. Kim, Y. Estrin, and B.C. Cooman, Metall. Mater. Trans. A 40, 3147 (2009).CrossRefGoogle Scholar
  23. 23.
    S. Curtze and V.T. Kuokkala, Acta Mater. 58, 5129 (2010).CrossRefGoogle Scholar
  24. 24.
    I. Gutierrez-Urrutia, S. Zaefferer, and D. Raabe, Mater. Sci. Eng. A 527, 3552 (2010).CrossRefGoogle Scholar
  25. 25.
    H. Idrissi, K. Renard, D. Schryvers, and P.J. Jacques, Scripta Mater. 63, 961 (2010).CrossRefGoogle Scholar
  26. 26.
    O. Bouaziz, S. Allain, and C. Scott, Scripta Mater. 58, 484 (2008).CrossRefGoogle Scholar
  27. 27.
    H. Beladi, I.B. Timokhina, Y. Estrin, J. Kim, B.C. Cooman, and S.K. Kim, Acta Mater. 59, 7787 (2011).CrossRefGoogle Scholar
  28. 28.
    H.K. Yang, Z.J. Zhang, and Z.F. Zhang, Scripta Mater. 68, 992 (2013).CrossRefGoogle Scholar
  29. 29.
    D. Barbier, N. Gey, S. Allain, N. Bozzolo, and M. Humbert, Mater. Sci. Eng. A 500, 196 (2009).CrossRefGoogle Scholar
  30. 30.
    I. Gutierrez-Urrutia, S. Zaefferer, and D. Raabe, JOM 65, 1229 (2013).CrossRefGoogle Scholar
  31. 31.
    I. Gutierrez-Urrutia, S. Zaefferer, and D. Raabe, Scripta Mater. 61, 737 (2009).CrossRefGoogle Scholar
  32. 32.
    I. Gutierrez-Urrutia and D. Raabe, Scripta Mater. 66, 992 (2012).CrossRefGoogle Scholar
  33. 33.
    I. Gutierrez-Urrutia and D. Raabe, Acta Mater. 59, 6449 (2011).CrossRefGoogle Scholar
  34. 34.
    I. Gutierrez-Urrutia and D. Raabe, Scripta Mater. 66, 343 (2012).CrossRefGoogle Scholar
  35. 35.
    S. Reeh, D. Music, T. Gebhardt, M. Kasprzak, T. Jäpel, S. Zaefferer, D. Raabe, S. Richter, A. Schwedt, J. Mayer, B. Wietbrock, G. Hirt, and J.M. Schneider, Acta Mater. 60, 6025 (2012).CrossRefGoogle Scholar
  36. 36.
    H. Kim, D.-W. Suh, and N.J. Kim, Sci. Technol. Adv. Mater. 14, 014205 (2013).CrossRefGoogle Scholar
  37. 37.
    G. Frommeyer and U. Brüx, Steel Res. Int. 77, 627 (2006).Google Scholar
  38. 38.
    J.D. Yoo and K.-T. Park, Mater. Sci. Eng. A 496, 417 (2008).CrossRefGoogle Scholar
  39. 39.
    K.M. Chang, C.G. Chao, and T.F. Liu, Scripta Mater. 63, 162 (2010).CrossRefGoogle Scholar
  40. 40.
    K. Choi, C.-H. Seo, H. Lee, S.K. Kim, J.H. Kwak, K.G. Chin, K.-T. Park, and J. Kim, Scripta Mater. 63, 1028 (2010).CrossRefGoogle Scholar
  41. 41.
    I. Gutierrez-Urrutia and D. Raabe, Acta Mater. 60, 5791 (2012).CrossRefGoogle Scholar
  42. 42.
    S.Y. Han, S.Y. Shin, H.-J. Lee, B.-J. Lee, S. Lee, N.J. Kim, and J.-H. Kwak, Metall. Mater. Trans. A 43A, 843 (2012).CrossRefGoogle Scholar
  43. 43.
    I. Gutierrez-Urrutia and D. Raabe, Scripta Mater. 68, 343 (2013).CrossRefGoogle Scholar
  44. 44.
    Y. Kimura, K. Handa, H. Hayashi, and Y. Mishima, Intermetallics 12, 607 (2004).CrossRefGoogle Scholar
  45. 45.
    J.-B. Seol, D. Raabe, P. Choi, H.-S. Park, J.-H. Kwak, and C.-G. Park, Scripta Mater. 68, 348 (2013).CrossRefGoogle Scholar
  46. 46.
    C.Y. Chao, C.N. Hwang, and T.F. Liu, Scripta Metall. Mater. 28, 109 (1993).CrossRefGoogle Scholar
  47. 47.
    C.N. Hwang, C.Y. Chao, and T.F. Liu, Scripta Metall. Mater. 28, 263 (1993).CrossRefGoogle Scholar
  48. 48.
    I. Gutierrez-Urrutia and D. Raabe, Mater. Sci. Technol. 30, 1099 (2014).Google Scholar
  49. 49.
    H. Springer and D. Raabe, Acta Mater. 60, 4950 (2012).CrossRefGoogle Scholar
  50. 50.
    D.R. Steinmetz, T. Japel, B. Wietbrock, P. Eisenlohr, I. Gutierrez-Urrutia, A. Saeed-Akbari, T. Hickel, F. Roters, and D. Raabe, Acta Mater. 61, 494 (2013).CrossRefGoogle Scholar
  51. 51.
    F. Roters, D. Raabe, and G. Gottstein, Acta Mater. 48, 4181 (2000).CrossRefGoogle Scholar
  52. 52.
    H. Mecking and U.F. Kocks, Acta Metall. 29, 1865 (1981).CrossRefGoogle Scholar
  53. 53.
    U.F. Kocks, A.S. Argon, and M.F. Ashby, Prog. Mater Sci. 19, 1 (1975).CrossRefGoogle Scholar
  54. 54.
    R.L. Fullman, Trans. AIME. 197, 447 (1953).Google Scholar
  55. 55.
    S. Mahajan and G.Y. Chin, Acta Metall. 21, 1353 (1973).CrossRefGoogle Scholar
  56. 56.
    A. Saeed-Akbari, J. Imlau, U. Prahl, and W. Bleck, Metall. Mater. Trans. A 40A, 3076 (2009).CrossRefGoogle Scholar
  57. 57.
    M. Koyama, E. Akiyama, T. Sawaguchi, D. Raabe, and K. Tsuzaki, Scripta Mater. 66, 459 (2012).CrossRefGoogle Scholar
  58. 58.
    M. Koyama, E. Akiyama, K. Tsuzaki, and D. Raabe, Acta Mater. 61, 4607 (2013).CrossRefGoogle Scholar
  59. 59.
    M. Koyama, H. Springer, S.V. Merzlikin, K. Tsuzaki, E. Akiyama, and D. Raabe, Int. J. Hydrog. Energy 39, 4634 (2014).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2014

Authors and Affiliations

  • D. Raabe
    • 1
    Email author
  • H. Springer
    • 1
  • I. Gutierrez-Urrutia
    • 1
  • F. Roters
    • 1
  • M. Bausch
    • 1
  • J. -B. Seol
    • 1
  • M. Koyama
    • 2
  • P. -P. Choi
    • 1
  • K. Tsuzaki
    • 2
  1. 1.Max-Planck-Institut für EisenforschungDüsseldorfGermany
  2. 2.Department of Mechanical EngineeringKyushu UniversityFukuokaJapan

Personalised recommendations