Advertisement

JOM

, Volume 66, Issue 7, pp 1138–1143 | Cite as

Modeling of Nd-Oxide Grain Boundary Phases in Nd-Fe-B Sintered Magnets

  • G. Hrkac
  • K. Butler
  • T. G. Woodcock
  • L. Saharan
  • T. Schrefl
  • O. Gutfleisch
Article

Abstract

We use atomistic and micromagnetic simulations combined with atomic-scale, aberration-corrected transmission electron microscopy to study the anisotropy profile of the interface between a Nd2O3-hP5 and a Nd2Fe14B phase. It is shown that a hybrid Morse-Buckingham potential approach can be used to study mixed-metallic and oxide-rich systems and to calculate surface-energy-induced large strains and potentially large relaxation effects on the adjacent grains. These are used to derive a magnetoelastic anisotropy energy from a first-order perturbation of the magnetoelastic Hamiltonian and are used to evaluate its effect on coercivity. It is shown that the change in coercivity originates from these distortions in the Nd2Fe14B crystal lattice close to the grain boundary, and the coercivity can be evaluated using such a multiscale modeling approach.

Keywords

Nd2O3 Magnetocrystalline Anisotropy Lattice Minimization Energy Minimum State Sintered Magnet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

The authors gratefully acknowledge financial support from the Toyota Motor Corporation and the fruitful discussions with Dr. Kato, Dr. Tetsuja, and Dr. Yano and the EPSRC for financial support under Grants EP/G032440/1 and EP/G032300/1, the WWTF Project MA09-029, and the Royal Society.

References

  1. 1.
    O. Gutfleisch, M.A. Willard, E. Brück, C.H. Chen, S.G. Shankar, and J.P. Liu, Adv. Mater. 23, 821 (2011).CrossRefGoogle Scholar
  2. 2.
    J.F. Herbst, J.J. Croat, F.E. Pinkerton, and W.B. Yelon, Phys. Rev. B 29, 4176 (1984).CrossRefGoogle Scholar
  3. 3.
    S. Hirosawa, Y. Matsuura, H. Yamamoto, S. Fujimura, and M. Sagawa, J. Appl. Phys. 59, 873 (1986).CrossRefGoogle Scholar
  4. 4.
    S. Sugimoto, Proceedings of the 20th International Workshop on Rare Earth Permanent Magnets and Their Applications (Athens, Greece: Admore, 2008), pp. 106–108.Google Scholar
  5. 5.
    H. Kato, T. Akiya, K. Koike, K. Koyama, and M. Sagawa, Proceedings of the 20th International Workshop on Rare Earth Permanent Magnets and Their Applications (Athens, Greece: Admore, 2008), pp. 111–113.Google Scholar
  6. 6.
    M. Sagawa and Y. Une, Proceedings of the 20th International Workshop on Rare Earth Permanent Magnets and Their Applications (Athens, Greece: Admore, 2008), pp. 103–105.Google Scholar
  7. 7.
    K. Hirota, T. Ohashi, N. Nakamura, T. Minowa, and M. Honshima, Proceedings of the 20th International Workshop on Rare Earth Permanent Magnets and Their Applications (Athens, Greece: Admore, 2008), pp. 122–125.Google Scholar
  8. 8.
    O. Gutfleisch, J. Appl. Phys. D 33, R157 (2000).CrossRefGoogle Scholar
  9. 9.
    W.F. Brown, Rev. Mod. Phys. 17, 15 (1945).CrossRefGoogle Scholar
  10. 10.
    K.-D. Durst and H. Kronmüller, Proceedings of the 4th International Symposium Magnetic Anisotropy and Coercivity in RETM Alloys (Dayton, OH: University of Dayton, 1985), pp. 725–735.Google Scholar
  11. 11.
    E. Adler and P. Hamann, Proceedings of the 4th International Symposium Magnetic Anisotropy and Coercivity in RETM Alloys (Dayton, OH: University of Dayton, 1985), pp. 747–760.Google Scholar
  12. 12.
    M. Sagawa, S. Fujimura, N. Togawa, H. Yamamoto, and Y. Matsuura, J. Appl. Phys. 55, 2083 (1984).CrossRefGoogle Scholar
  13. 13.
    J. Fidler and K.G. Knoch, J. Magn. Magn. Mater. 80, 48 (1989).CrossRefGoogle Scholar
  14. 14.
    R.K. Mishra, J.K. Chen, and G. Thomas, J. Appl. Phys. 59, 2244 (1986).CrossRefGoogle Scholar
  15. 15.
    J. Fidler and J. Bernardi, J. Appl. Phys. 70, 6456 (1991).CrossRefGoogle Scholar
  16. 16.
    H.J. Engelmann, A.S. Kim, and G. Thomas, Scr. Mater. 36, 55 (1997).CrossRefGoogle Scholar
  17. 17.
    J. Bernardi and J. Fidler, J. Appl. Phys. 76, 6241 (1994).CrossRefGoogle Scholar
  18. 18.
    F. Vial, F. Joly, E. Nevalainen, M. Sagawa, K. Hiraga, and K.T. Park, J. Magn. Magn. Mater. 242–245, 1329 (2002).CrossRefGoogle Scholar
  19. 19.
    K. Makita and O. Yamashita, Appl. Phys. Lett. 74, 2056 (1999).CrossRefGoogle Scholar
  20. 20.
    Y. Shinba, T.J. Konno, K. Ishikawa, K. Hiraga, and M. Sagawa, J. Appl. Phys. 97, 053504 (2005).CrossRefGoogle Scholar
  21. 21.
    W. Mo, L. Zhang, Q. Liu, A. Shan, J. Wu, and M. Komuro, Scr. Mater. 59, 179 (2008).CrossRefGoogle Scholar
  22. 22.
    T.G. Woodcock and O. Gutfleisch, Acta Mater. 59, 1026 (2011).CrossRefGoogle Scholar
  23. 23.
    T.G. Woodcock, J. Wright, N. Scheerbaum, J. Liu, and O. Gutfleisch, J. Appl. Phys. 110, 026103 (2011).CrossRefGoogle Scholar
  24. 24.
    G. Hrkac, T.G. Woodcock, C. Freeman, A. Goncharov, J. Dean, T. Schrefl, and O. Gutfleisch, Appl. Phys. Lett. 97, 232511 (2010).CrossRefGoogle Scholar
  25. 25.
    J.D. Gale, Z. Kritstallogr. 220, 552 (2005).Google Scholar
  26. 26.
    B.G. Dick Jr and A.W. Overhauser, Phys. Rev. 112, 90–103 (1958).CrossRefGoogle Scholar
  27. 27.
    Y. Chen, S. Hirosawa, and S. Iwata, Mater. Sci. Forum 654–656, 1674 (2010).CrossRefGoogle Scholar
  28. 28.
    P. Morin and D. Schmitt, Ferromagnetic Materials, Vol. 7, ed. K.H.J. Buschow and E.P. Wohlfarth (Amsterdam: Elsevier, 1990), Google Scholar
  29. 29.
    M.D. Kuz’min and J.M.D. Coey, Phys. Rev. B 50, 12533 (1994).CrossRefGoogle Scholar
  30. 30.
    C. Rudowicz, J. Phys. C 18, 1415 (1985).CrossRefGoogle Scholar
  31. 31.
    C.H. de Groot and K. De Kort, J. Appl. Phys. 85, 8312 (1999).CrossRefGoogle Scholar
  32. 32.
    P.A. Algarabel, M.R. Ibarra, C. Marquina, A. del Moral, and S. Zemiri, J. Magn. Magn. Mater. 84, 109 (1990).CrossRefGoogle Scholar
  33. 33.
    J.X. Boucherle and J. Schweizer, Acta Cryst. B 31, 2745 (1975).CrossRefGoogle Scholar
  34. 34.
    G. Hrkac, T. Schrefl, J. Dean, A. Goncharov, S. Bance, D. Allwood, D. Suess, and J. Fidler, J. Appl. Phys. 105, 083923 (2009).CrossRefGoogle Scholar
  35. 35.
    O. Ertl, G. Hrkac, D. Suess, M. Kirschner, F. Dorfbauer, J. Fidler, and T. Schrefl, J. Appl. Phys. 99, 08S303 (2006).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2014

Authors and Affiliations

  • G. Hrkac
    • 1
  • K. Butler
    • 2
  • T. G. Woodcock
    • 3
  • L. Saharan
    • 1
  • T. Schrefl
    • 4
  • O. Gutfleisch
    • 5
  1. 1.College of Engineering, Mathematics and Physical SciencesUniversity of ExeterDevonUK
  2. 2.Centre for Sustainable Chemical TechnologiesUniversity of BathBathUK
  3. 3.IFW Dresden, Institute for Metallic MaterialsDresdenGermany
  4. 4.St. Pölten University of Applied SciencesSt. PöltenAustria
  5. 5.TU Darmstadt, Institute for Materials ScienceDarmstadtGermany

Personalised recommendations