JOM

, Volume 66, Issue 6, pp 892–897 | Cite as

Compressive Characterization of Single Porous SiC Hollow Particles

  • Vasanth Chakravarthy Shunmugasamy
  • Steven E. Zeltmann
  • Nikhil Gupta
  • Oliver M. StrbikIII
Article

Abstract

Silicon carbide hollow spheres are compression tested to understand their energy absorption characteristics. Two types of particles having tap densities of 440 kg/m3 and 790 kg/m3 (referred to as S1 and S2, respectively) were tested in the present study. The process used to fabricate the hollow spheres leads to porosity in the walls, which affects the mechanical properties of the hollow spheres. The porosity in the walls helps in obtaining mechanical bonding between the matrix material and the particle when such particles are used as fillers in composites. The single-particle compression test results show that the S1 and S2 particles had fracture energies of 0.38 × 10−3 J and 3.18 × 10−3 J, respectively. The modulus and fracture energy of the particles were found to increase with increasing diameter. However, the increasing trend shows variations because the wall thickness can vary as an independent parameter. Hollow particle fillers are used in polymer and metal matrices to develop porous composites called syntactic foams. The experimentally measured properties of these particles can be used in theoretical models to design syntactic foams with the desired set of properties for a given application.

References

  1. 1.
    X.W. Lou, L.A. Archer, and Z. Yang, Adv. Mater. 20, 3987 (2008).CrossRefGoogle Scholar
  2. 2.
    N. Nguyen, N. Gupta, T. Ioppolo, and M.V. Ötügen, J. Mater. Sci. 44, 1560 (2009).CrossRefGoogle Scholar
  3. 3.
    L. Wang, J. Zhang, X. Yang, C. Zhang, W. Gong, and J. Yu, Mater. Des. 55, 929 (2014).CrossRefGoogle Scholar
  4. 4.
    B.L. Zhu, H. Zheng, J. Wang, J. Ma, J. Wu, and R. Wu, Compos. Part B 58, 91 (2014).CrossRefGoogle Scholar
  5. 5.
    K.B. Carlisle, M. Lewis, K.K. Chawla, M. Koopman, and G.M. Gladysz, Acta Mater. 55, 2301 (2007).CrossRefGoogle Scholar
  6. 6.
    M. Koopman, G. Gouadec, K. Carlisle, K.K. Chawla, and G. Gladysz, Scripta Mater. 50, 593 (2004).CrossRefGoogle Scholar
  7. 7.
    K.B. Carlisle, M. Koopman, K.K. Chawla, R. Kulkarni, G.M. Gladysz, and M. Lewis, J. Mater. Sci. 41, 3987 (2006).CrossRefGoogle Scholar
  8. 8.
    A. Shams and M. Porfiri, Int. J. Nonlinear Mech. 61, 19 (2014).CrossRefGoogle Scholar
  9. 9.
    K.B. Carlisle, K.K. Chawla, M. Koopman, G.M. Gladysz, and M. Lewis, J. Cell. Plast. 43, 417 (2007).CrossRefGoogle Scholar
  10. 10.
    I.A. Ibrahim, F.A. Mohamed, and E.J. Lavernia, J. Mater. Sci. 26, 1137 (1991).CrossRefGoogle Scholar
  11. 11.
    C. Zweben, JOM 50 (6), 47 (1998).Google Scholar
  12. 12.
    S.E. Saddow, Silicon Carbide Biotechnology, ed. S.E. Saddow (Oxford: Elsevier, 2012), pp. 1–15.Google Scholar
  13. 13.
    D.D. Luong, O.M. Strbik III, V.H. Hammond, N. Gupta, and K. Cho, J. Alloys Compd. 550, 412 (2013).CrossRefGoogle Scholar
  14. 14.
    M. Labella, V.C. Shunmugasamy, O.M. Strbik III, and N. Gupta, J. Appl. Polym. Sci. (2014). doi:10.1002/APP.40689.
  15. 15.
    L. Licitra, D.D. Luong, O.M. Strbik III, and N. Gupta, Mater Des. (2014). doi:10.1016/j.matdes.2014.03.041.
  16. 16.
    G. Tagliavia, M. Porfiri, and N. Gupta, J. Compos. Mater. 43, 561 (2009).CrossRefGoogle Scholar
  17. 17.
    B. John and C.P.R. Nair, Update on Syntactic Foams (Shropshire, UK: iSmithers Rapra, 2010).Google Scholar
  18. 18.
    F.A. Shutov, Chromatography/Foams/Copolymers (Berlin: Springer, 1986), pp. 63–123 .Google Scholar
  19. 19.
    N. Gupta, Kishore, E. Woldesenbet, and S. Sankaran, J. Mater. Sci. 36, 4485 (2001).CrossRefGoogle Scholar
  20. 20.
    N. Gupta, S.E. Zeltmann, V.C. Shunmugasamy, and D. Pinisetty, JOM 66, 245 (2014).CrossRefGoogle Scholar
  21. 21.
    N. Gupta, D. Pinisetty, and V.C. Shunmugasamy, Reinforced Polymer Matrix Syntactic Foams Effect of Nano and Micro-Scale Reinforcement (New York: Springer, 2013).Google Scholar
  22. 22.
    A.J. Hodge, R.K. Kaul, and W.M. McMahon, Proceedings of the 45th International SAMPE Symposium, ed. S. Lout et al. (Covina, CA: SAMPE, 2000), pp. 2293–2304 Google Scholar
  23. 23.
    B. Zhu, J. Ma, J. Wang, J. Wu, and D. Peng, J. Reinf. Plast. Compos. 31, 1311 (2012).CrossRefGoogle Scholar
  24. 24.
    V. Shunmugasamy, D. Pinisetty, and N. Gupta, J. Mater. Sci. 47, 5596 (2012).CrossRefGoogle Scholar
  25. 25.
    V. Shunmugasamy, D. Pinisetty, and N. Gupta, J. Mater. Sci. 49, 180 (2014).CrossRefGoogle Scholar
  26. 26.
    A. Fery and R. Weinkamer, Polymer 48, 7221 (2007).CrossRefGoogle Scholar
  27. 27.
    L. Zhang, M. D’Acunzi, M. Kappl, G.K. Auernhammer, and D. Vollme, Langmuir 25, 2711 (2009).CrossRefGoogle Scholar
  28. 28.
    J. Nji and G. Li, Compos. Part A 39, 1404 (2008).CrossRefGoogle Scholar
  29. 29.
    C.H. Jenkins and S.K. Khanna, A Modern Integration of Mechanics and Materials in Structural Design (London: Elsevier, 2005).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2014

Authors and Affiliations

  • Vasanth Chakravarthy Shunmugasamy
    • 1
  • Steven E. Zeltmann
    • 1
  • Nikhil Gupta
    • 1
  • Oliver M. StrbikIII
    • 2
  1. 1.Composite Materials and Mechanics Laboratory, Mechanical and Aerospace Engineering DepartmentNew York University Polytechnic School of EngineeringBrooklynUSA
  2. 2.Deep Springs Technology, LLCToledoUSA

Personalised recommendations