JOM

, Volume 66, Issue 3, pp 366–374 | Cite as

Computational Discovery, Characterization, and Design of Single-Layer Materials

Article

Abstract

Single-layer materials open up tremendous opportunities for applications in nanoelectronic devices and energy technologies. We first review the four components of a materials science tetrahedron for single-layer materials. We then provide a theoretical perspective of characterizing single-layer materials. This leads to a general data-mining process to predict and computationally characterize emerging single-layer materials. Finally, we comment on limitations and possible improvements of current computational procedures for the discovery, characterization, and design of single-layer materials.

References

  1. 1.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Science 306, 666 (2004).CrossRefGoogle Scholar
  2. 2.
    C. Tusche, H.L. Meyerheim, and J. Kirschner, Phys. Rev. Lett. 99, 026102 (2007).CrossRefGoogle Scholar
  3. 3.
    N. Alem, R. Erni, C. Kisielowski, M.D. Rossell, W. Gannett, and A. Zettl, Phys. Rev. B 80, 155425 (2009).CrossRefGoogle Scholar
  4. 4.
    K.F. Mak, C. Lee, J. Hone, J. Shan, and T.F. Heinz, Phys. Rev. Lett. 105, 136805 (2010).CrossRefGoogle Scholar
  5. 5.
    H.L. Zhuang and R.G. Hennig, Chem. Mater. 25, 3232 (2013).CrossRefGoogle Scholar
  6. 6.
    P. Yang and J.-M. Tarascon, Nat. Mater. 11, 560563 (2012).Google Scholar
  7. 7.
    M. Xu, T. Liang, M. Shi, and H. Chen, Chem. Rev. 113, 3766 (2013).CrossRefGoogle Scholar
  8. 8.
    S.Z. Butler, S.M. Hollen, L. Cao, Y. Cui, J.A. Gupta, H.R. Gutierrez, T.F. Heinz, S.S. Hong, J. Huang, A.F. Ismach, E. Johnston-Halperin, M. Kuno, V.V. Plashnitsa, R.D. Robin-son, R.S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M.G. Spencer, M. Terrones, W. Windl, and J.E. Goldberger, ACS Nano 7, 2898 (2013).CrossRefGoogle Scholar
  9. 9.
    R. Mas-Balleste, C. Gomez-Navarro, J. Gomez-Herrero, and F. Zamora, Nanoscale 3, 20 (2011).CrossRefGoogle Scholar
  10. 10.
    Y. Sun, Q. Wu, and G. Shi, Energy Environ. Sci. 4, 1113 (2011).CrossRefGoogle Scholar
  11. 11.
    J. Liu, Y. Xue, M. Zhang, and L. Dai, MRS Bull. 37, 1265 (2012).CrossRefGoogle Scholar
  12. 12.
    H.S. Shin, G. Eda, L.-J. Li, K.P. Loh, and H. Zhang, Nat. Chem. 5, 263 (2013).CrossRefGoogle Scholar
  13. 13.
    P. Vogt, P. De Padova, C. Quaresima, J. Avila, E. Frantzeskakis, M.C. Asensio, A. Resta, B. Ealet, and G. Le Lay, Phys. Rev. Lett. 108, 155501 (2012).CrossRefGoogle Scholar
  14. 14.
    Y. Sun, Z. Sun, S. Gao, H. Cheng, Q. Liu, F. Lei, S. Wei, and Y. Xie, Adv. Energy Mater. 4, 1300611 (2014).Google Scholar
  15. 15.
    S. Tan, Y. Zhang, M. Xia, Z. Ye, F. Chen, X. Xie, R. Peng, D. Xu, Q. Fan, and H. Xu, et al., Nat. Mater. 12, 634 (2013).CrossRefGoogle Scholar
  16. 16.
    H.L. Zhuang, A.K. Singh, and R.G. Hennig, Phys. Rev. B 87, 165415 (2013).CrossRefGoogle Scholar
  17. 17.
    A.K. Singh and R.G. Hennig, Phys. Rev. B 87, 094112 (2013).CrossRefGoogle Scholar
  18. 18.
    J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, T.J. Booth, and S. Roth, Nature 446, 60 (2007).CrossRefGoogle Scholar
  19. 19.
    A. Fasolino, J.H. Los, and M.I. Katsnelson, Nat. Mater. 6, 858–861 (2007).CrossRefGoogle Scholar
  20. 20.
    J. Brivio, D.T.L. Alexander, and A. Kis, Nano Letter. 11, 5148 (2011).CrossRefGoogle Scholar
  21. 21.
    P.Y. Huang, C.S. Ruiz-Vargas, A.M. van der Zande, W.S. Whitney, M.P. Levendorf, J.W. Kevek, S. Garg, J.S. Alden, C.J. Hustedt, and Y. Zhu, et al., Nature 469, 389 (2011).CrossRefGoogle Scholar
  22. 22.
    A.M. van der Zande, P.Y. Huang, D.A. Chenet, T.C. Berkel-bach, Y.M. You, G.-H. Lee, T.F. Heinz, D.R. Reichman, D.A. Muller, and J.C. Hone, Nat. Mater. 12, 554561 (2013).Google Scholar
  23. 23.
    H. Liu, Y. Liu, and D. Zhu, J. Mater. Chem. 21, 3335 (2011).CrossRefGoogle Scholar
  24. 24.
    O.V. Yazyev and S.G. Louie, Phys. Rev. B 81, 195420 (2010).CrossRefGoogle Scholar
  25. 25.
    S. Chen, E. Ertekin, and D.C. Chrzan, Phys. Rev. B 81, 155417 (2010).CrossRefGoogle Scholar
  26. 26.
    J.H. Warner, E.R. Margine, M. Mukai, A.W. Robertson, F. Giustino, and A.I. Kirkland, Science 337, 209 (2012).CrossRefGoogle Scholar
  27. 27.
    C.S. Ruiz-Vargas, H.L. Zhuang, P.Y. Huang, A.M. van der Zande, S. Garg, P.L. McEuen, D.A. Muller, R.G. Hennig, and J. Park, Nano Letter. 11, 2259 (2011).CrossRefGoogle Scholar
  28. 28.
    C. Lee, X. Wei, J.W. Kysar, and J. Hone, Science 321, 385 (2008).CrossRefGoogle Scholar
  29. 29.
    A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, and A.K. Geim, Rev. Mod. Phys. 81, 109 (2009).CrossRefGoogle Scholar
  30. 30.
    Q.H. Wang, K.K. Kalantar-Zadeh, A. Andras, J.N. Coleman, and M.S. Strano, Nat. Nanotechnol. 7, 699 (2012).CrossRefGoogle Scholar
  31. 31.
    L. Britnell, R.M. Ribeiro, A. Eckmann, R. Jalil, B.D. Belle, A. Mishchenko, Y.-J. Kim, R.V. Gorbachev, T. Georgiou, S.V. Morozov, A.N. Grigorenko, A.K. Geim, C. Casiraghi, A.H.C. Neto, and K.S. Novoselov, Science 340, 1311 (2013).CrossRefGoogle Scholar
  32. 32.
    A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C.N. Lau, Nano Letter. 8, 902 (2008).CrossRefGoogle Scholar
  33. 33.
    K.-A.N. Duerloo, M.T. Ong, and E.J. Reed, J. Phys. Chem. Lett. 3, 2871 (2012).CrossRefGoogle Scholar
  34. 34.
    H.L. Zhuang and R.G. Hennig, Phys. Rev. B 88, 115314 (2013).CrossRefGoogle Scholar
  35. 35.
    F. Bonaccorso, A. Lombardo, T. Hasan, Z. Sun, L. Colombo, and A.C. Ferrari, Mater. Today 15, 564 (2012).CrossRefGoogle Scholar
  36. 36.
    K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotke-vich, S.V. Morozov, and A.K. Geim, Proc. Natl. Acad. Sci. 102, 10451 (2005).CrossRefGoogle Scholar
  37. 37.
    A.W. Tsen, L. Brown, R.W. Havener, and J. Park, Acc. Chem. Res. 46, 2286 (2013).CrossRefGoogle Scholar
  38. 38.
    V. Nicolosi, M. Chhowalla, M.G. Kanatzidis, M.S. Strano, and J.N. Coleman, Science 340, 126419 (2013).CrossRefGoogle Scholar
  39. 39.
    H. Li, G. Lu, Y. Wang, Z. Yin, C. Cong, Q. He, L. Wang, F. Ding, T. Yu, and H. Zhang, Small 9, 1974 (2013).CrossRefGoogle Scholar
  40. 40.
    Y. Sun, H. Cheng, S. Gao, Q. Liu, Z. Sun, C. Xiao, C. Wu, S. Wei, and Y. Xie, J. Am. Chem. Soc. 134, 20294 (2012).CrossRefGoogle Scholar
  41. 41.
    J. Park, W.C. Mitchel, L. Grazulis, H.E. Smith, K.G. Eyink, J.J. Boeckl, D.H. Tomich, S.D. Pacley, and J.E. Hoelscher, Adv. Mater. 22, 4140 (2010).CrossRefGoogle Scholar
  42. 42.
    L. Britnell, R.V. Gorbachev, R. Jalil, B.D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M.I. Katsnelson, L. Eaves, S.V. Morozov, N.M.R. Peres, J. Leist, A.K. Geim, K.S. Novoselov, and L.A. Ponomarenko, Science 335, 947 (2012).CrossRefGoogle Scholar
  43. 43.
    Y. Sun, H. Cheng, S. Gao, Z. Sun, Q. Liu, Q. Liu, F. Lei, T. Yao, J. He, S. Wei, and Y. Xie, Angew. Chem. Int. 51, 8727 (2012).CrossRefGoogle Scholar
  44. 44.
    B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Nat. Nanotechnol. 6, 147 (2011).CrossRefGoogle Scholar
  45. 45.
    M.S. Fuhrer and J. Hone, Nat. Nanotechnol. 8, 146 (2013).CrossRefGoogle Scholar
  46. 46.
    S. Bertolazzi, J. Brivio, and A. Kis, ACS Nano 5, 9703 (2011).CrossRefGoogle Scholar
  47. 47.
    M. Winter and R.J. Brodd, Chem. Rev. 104, 4245 (2004).CrossRefGoogle Scholar
  48. 48.
    Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen, and Y. Chen, J. Phys. Chem. C 113, 13103 (2009).CrossRefGoogle Scholar
  49. 49.
    S. Lebègue, T. Björkman, M. Klintenberg, R.M. Nieminen, and O. Eriksson, Phys. Rev. X 3, 031002 (2013).Google Scholar
  50. 50.
    C. Ataca, H. Sahin, and S. Ciraci, J. Phys. Chem. C 116, 8983 (2012).CrossRefGoogle Scholar
  51. 51.
    H. Sahin, S. Cahangirov, M. Topsakal, E. Bekaroglu, E. Akturk, R. Senger, and S. Ciraci, Phys. Rev. B 80, 155453 (2009).CrossRefGoogle Scholar
  52. 52.
    S. Cahangirov, M. Topsakal, E. Aktürk, H. Şahin, and S. Ciraci, Phys. Rev. Lett. 102, 236804 (2009).CrossRefGoogle Scholar
  53. 53.
    H.L. Zhuang, M.D. Johannes, M.N. Blonsky, and R.G. Hennig, Appl. Phys. Lett. 104, 022116 (2014).CrossRefGoogle Scholar
  54. 54.
    H.L. Zhuang and R.G. Hennig, Appl. Phys. Lett. 103, 212102 (2013).CrossRefGoogle Scholar
  55. 55.
    H.L. Zhuang and R.G. Hennig, Appl. Phys. Lett. 101, 153109 (2012).CrossRefGoogle Scholar
  56. 56.
    H.L. Zhuang and R.G. Hennig, J. Phys. Chem. C 117, 20440 (2013).CrossRefGoogle Scholar
  57. 57.
    S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi, Rev. Mod. Phys. 73, 515 (2001).CrossRefGoogle Scholar
  58. 58.
    P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococ-cioni, I. Dabo, A. DalCorso, S. Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, and R.M. Wentzcovitch, J. Phys. Cond. Matter. 21, 395502 (2009).CrossRefGoogle Scholar
  59. 59.
    G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).CrossRefGoogle Scholar
  60. 60.
    M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, and D.J. Fox, Gaussian 09 (Wallingford, CT: Gaussian Inc., 2009), www.gaussian.com/g_prod/g09.htm.
  61. 61.
    J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle Scholar
  62. 62.
    J.P. Perdew, R.G. Parr, M. Levy, and J.L. Balduz, Phys. Rev. Lett. 49, 1691 (1982).CrossRefGoogle Scholar
  63. 63.
    J. Heyd, G.E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 118, 8207 (2003).CrossRefGoogle Scholar
  64. 64.
    G. Onida, L. Reining, and A. Rubio, Rev. Mod. Phys. 74, 601 (2002).CrossRefGoogle Scholar
  65. 65.
    C. Rödl and F. Bechstedt, Phys. Rev. B 86, 235122 (2012).CrossRefGoogle Scholar
  66. 66.
    P. Rinke, A. Schleife, E. Kioupakis, A. Janotti, C. Rödl, F. Bechstedt, M. Scheffler, and C.G. Van de Walle, Phys. Rev. Lett. 108, 126404 (2012).CrossRefGoogle Scholar
  67. 67.
    H. Zhong, G. Yang, H. Song, Q. Liao, H. Cui, P. Shen, and C.-X. Wang, J. Phys. Chem. C 116, 9319 (2012).CrossRefGoogle Scholar
  68. 68.
    J. Hwang, M. Kim, D. Campbell, H.A. Alsalman, J.Y. Kwak, S. Shivaraman, A.R. Woll, A.K. Singh, R.G. Hennig, S. Gorantla, M.H. Rmmeli, and M.G. Spencer, ACS Nano 7, 385 (2013).CrossRefGoogle Scholar
  69. 69.
    Y. Yoon, K. Ganapathi, and S. Salahuddin, Nano Lett. 11, 3768 (2011).CrossRefGoogle Scholar
  70. 70.
    K. Kaasbjerg, K.S. Thygesen, and K.W. Jacobsen, Phys. Rev. B 85, 115317 (2012).CrossRefGoogle Scholar
  71. 71.
    F. Ortmann, F. Bechstedt, and K. Hannewald, Phys. Status Solidi B 248, 511 (2011).CrossRefGoogle Scholar
  72. 72.
    B. Radisavljevic and A. Kis, Nat. Mater. 12, 815 (2013).CrossRefGoogle Scholar
  73. 73.
    W.W. Tipton, C.R. Bealing, K. Mathew, and R.G. Hennig, Phys. Rev. B 87, 184114 (2013).CrossRefGoogle Scholar
  74. 74.
    A.K. Geim and I.V. Grigorieva, Nature 499, 419 (2013).CrossRefGoogle Scholar
  75. 75.
    J. Klimeš and A. Michaelides, J. Chem. Phys. 137, 120901 (2012).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2014

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringCornell UniversityIthacaUSA

Personalised recommendations