Advertisement

JOM

, Volume 66, Issue 4, pp 566–572 | Cite as

High-Strength Low-Alloy (HSLA) Mg–Zn–Ca Alloys with Excellent Biodegradation Performance

  • J. Hofstetter
  • M. Becker
  • E. Martinelli
  • A. M. Weinberg
  • B. Mingler
  • H. Kilian
  • S. Pogatscher
  • P. J. Uggowitzer
  • J. F. LöfflerEmail author
Article

Abstract

This article deals with the development of fine-grained high-strength low-alloy (HSLA) magnesium alloys intended for use as biodegradable implant material. The alloys contain solely low amounts of Zn and Ca as alloying elements. We illustrate the development path starting from the high-Zn-containing ZX50 (MgZn5Ca0.25) alloy with conventional purity, to an ultrahigh-purity ZX50 modification, and further to the ultrahigh-purity Zn-lean alloy ZX10 (MgZn1Ca0.3). It is shown that alloys with high Zn-content are prone to biocorrosion in various environments, most probably because of the presence of the intermetallic phase Mg6Zn3Ca2. A reduction of the Zn content results in (Mg,Zn)2Ca phase formation. This phase is less noble than the Mg-matrix and therefore, in contrast to Mg6Zn3Ca2, does not act as cathodic site. A fine-grained microstructure is achieved by the controlled formation of fine and homogeneously distributed (Mg,Zn)2Ca precipitates, which influence dynamic recrystallization and grain growth during hot forming. Such design scheme is comparable to that of HSLA steels, where low amounts of alloying elements are intended to produce a very fine dispersion of particles to increase the material’s strength by refining the grain size. Consequently our new, ultrapure ZX10 alloy exhibits high strength (yield strength R p = 240 MPa, ultimate tensile strength R m = 255 MPa) and simultaneously high ductility (elongation to fracture A = 27%), as well as low mechanical anisotropy. Because of the anodic nature of the (Mg,Zn)2Ca particles used in the HSLA concept, the in vivo degradation in a rat femur implantation study is very slow and homogeneous without clinically observable hydrogen evolution, making the ZX10 alloy a promising material for biodegradable implants.

Keywords

Simulated Body Fluid Intermetallic Particle Biocorrosion Glow Discharge Mass Spectrometry Cathodic Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors appreciate the support of the K-project OptiBioMat (Development and optimization of biocompatible metallic materials); FFG-COMET program, Austria; and the Laura Bassi Center of Expertise Bioresorbable Implants for Children (BRIC), FFG, Austria. We are most grateful to DePuy Synthes Biomaterials, Synthes GmbH, Switzerland, for the valuable scientific support; special thanks go to Dr. Thomas Imwinkelried.

References

  1. 1.
    F. Witte, N. Hort, C. Vogt, S. Cohen, K.U. Kainer, and R. Willumeit, Curr. Opin. Solid State Mater. Sci. 12, 63 (2008).CrossRefGoogle Scholar
  2. 2.
    M.P. Staiger, A.M. Pietak, J. Huadmai, and G. Dias, Biomaterials 27, 1728 (2006).CrossRefGoogle Scholar
  3. 3.
    B. Zberg, P.J. Uggowitzer, and J.F. Löffler, Nat. Mater. 8, 887 (2009).Google Scholar
  4. 4.
    A.C. Hänzi, A. Sologubenko, P. Gunde, M. Schinhammer, and P.J. Uggowitzer, Philos. Mag. Lett. 92, 417 (2012).CrossRefGoogle Scholar
  5. 5.
    H. Tapiero and K.D. Tew, Biomed. Pharmacother. 57, 399 (2003).CrossRefGoogle Scholar
  6. 6.
    M. Stefanidou, C. Maravelias, A. Dona, and C. Spiliopoulou, Arch. Toxicol. 80, 1 (2006).CrossRefGoogle Scholar
  7. 7.
    P. Gunde, A.C. Hänzi, A.S. Sologubenko, and P.J. Uggowitzer, Mater. Sci. Eng. A 528, 1047 (2011).CrossRefGoogle Scholar
  8. 8.
    A.C. Hänzi, F.H. Dalla Torre, A.S. Sologubenko, P. Gunde, R. Schmid-Fetzer, M. Kuehlein, J.F. Löffler, and P.J. Uggowitzer, Philos. Mag. Lett. 89, 377 (2009).CrossRefGoogle Scholar
  9. 9.
    J. Koike, Mater. Sci. Forum 449, 665 (2004).CrossRefGoogle Scholar
  10. 10.
    J. Koike, T. Kobayashi, T. Mukai, H. Watanabe, M. Suzuki, K. Maruyama, and K. Higashi, Acta Mater. 51, 2055 (2003).CrossRefGoogle Scholar
  11. 11.
    C.L. Mendis, K. Oh-ishi, Y. Kawamura, T. Honma, S. Kamado, and K. Hono, Acta Mater. 57, 749 (2009).CrossRefGoogle Scholar
  12. 12.
    T. Homma, C.L. Mendis, K. Hono, and S. Kamado, Mater. Sci. Eng. A 527, 2356 (2010).CrossRefGoogle Scholar
  13. 13.
    T. Kraus, S.F. Fischerauer, A.C. Hänzi, P.J. Uggowitzer, J.F. Löffler, and A.M. Weinberg, Acta Biomater. 8, 1230 (2012).CrossRefGoogle Scholar
  14. 14.
    K. Pichler, S.F. Fischerauer, P. Ferlic, E. Martinelli, H.P. Brezinsek, P.J. Uggowitzer, J.F. Löffler, and A.M. Weinberg, JOM, this issue.Google Scholar
  15. 15.
    M. Liu, P.J. Uggowitzer, A.V. Nagasekhar, P. Schmutz, M. Easton, G.-L. Song, and A. Atrens, Corros. Sci. 51, 602 (2009).CrossRefGoogle Scholar
  16. 16.
    H.R. Bakhsheshi-Rad, M.R. Abdul-Kadir, M.H. Idris, and S. Farahany, Corros. Sci. 64, 184 (2012).CrossRefGoogle Scholar
  17. 17.
    J.D. Hanawalt, C.E. Nelson, and J.A. Peloubet, Trans. AIME 147, 273 (1942).Google Scholar
  18. 18.
    J. Hillis and R.W. Murray (Paper presented at SDCE 14th International Die Casting Congress and Exposition, Toronto, Canada, 1987), Paper No. G-T87-003.Google Scholar
  19. 19.
    G.L. Song and A. Atrens, Adv. Eng. Mater. 1, 11 (1999).CrossRefGoogle Scholar
  20. 20.
    G.L. Song and A. Atrens, Adv. Eng. Mater. 5, 837 (2003).CrossRefGoogle Scholar
  21. 21.
    J.F. Löffler, P.J. Uggowitzer, C. Wegmann, M. Becker, and H.K. Feichtinger, European Patent Application PCT/EP 2013/000131-WO2013/107644 (2012–2013).Google Scholar
  22. 22.
    CompuTherm LLC, Pandat software package for calculating phase diagrams and thermodynamic properties of multi-component alloys, Madison, WI 53719 USA. http://www.computherm.com/.
  23. 23.
    G. Song, A. Atrens, and D.H. StJohn (Paper presented at the Magnesium Technology Conference at TMS, New Orleans, LA, 2001), p. 255.Google Scholar
  24. 24.
    M. Schinhammer, J. Hofstetter, C. Wegmann, F. Moszner, J.F. Löffler, and P.J. Uggowitzer, Adv. Eng. Mater. 15, 434 (2013).CrossRefGoogle Scholar
  25. 25.
    F. Cao, Z. Shi, J. Hofstetter, P.J. Uggowitzer, G. Song, M. Liu, and A. Atrens, Corros. Sci. 75, 78 (2013).CrossRefGoogle Scholar
  26. 26.
    H. Kalb, A. Rzany, and B. Hensel, Corros. Sci. 57, 122 (2012).CrossRefGoogle Scholar
  27. 27.
    A.C. Hänzi, I. Gerber, M. Schinhammer, J.F. Löffler, and P.J. Uggowitzer, Acta Biomater. 6, 1824 (2010).CrossRefGoogle Scholar
  28. 28.
    A. Yamamoto and S. Hiromoto, Mater. Sci. Eng. C 29, 1559 (2009).CrossRefGoogle Scholar
  29. 29.
    N.T. Kirkland, N. Birbilis, and M.P. Staiger, Acta Biomater. 8, 925 (2012).CrossRefGoogle Scholar
  30. 30.
    N.T. Kirkland, J. Waterman, N. Birbilis, G. Dias, T. Woodfield, R. Hartshorn, and M.P. Staiger, J. Mater. Sci. Mater. Med. 23, 283 (2012).CrossRefGoogle Scholar
  31. 31.
    N.I. Zainal Abidin, A.D. Atrens, D. Martin, and A. Atrens, Corros. Sci. 53, 3542 (2011).Google Scholar
  32. 32.
    N.I. Zainal Abidin, B. Rolfe, H. Owen, J. Malisano, D. Martin, J. Hofstetter, P.J. Uggowitzer, and A. Atrens, Corros. Sci. 75, 354 (2013).Google Scholar
  33. 33.
    Y. Song, E.-H. Han, D. Shan, C.D. Yim, and B.S. You, Corros. Sci. 60, 238 (2012).CrossRefGoogle Scholar
  34. 34.
    P.-R. Cha, H.-S. Han, G.-F. Yang, Y.-C. Kim, K.-H. Hong, S.-C. Lee, J.-Y. Jung, J.-P. Ahn, Y.-Y. Kim, S.-Y. Cho, J.Y. Byun, K.-S. Lee, S.-J. Yang, and H.-K. Seok, Scientif. Rep. 3 (2013). doi: 10.1038/srep02367.
  35. 35.
    H.R. Bakhsheshi-Rad, M.H. Idris, M.R. Abdul-Kadir, S. Farahany, and M.Y. Yahya, Appl. Mech. Mater. 121, 568 (2012).Google Scholar
  36. 36.
    E. Zhang and L. Yang, Mater. Sci. Eng. A 497, 111 (2008).CrossRefGoogle Scholar
  37. 37.
    H. Du, Z. Wei, X. Liu, and E. Zhang, Mater. Chem. Phys. 125, 568 (2011).CrossRefGoogle Scholar
  38. 38.
    N.T. Kirkland, N. Birbilis, J. Walker, T. Woodfield, G.J. Dias, and M.P. Staiger, J. Biomed. Mater. Res. B Appl. Biomater. 95, 91 (2010).CrossRefGoogle Scholar
  39. 39.
    D.V. Wilson and J.A. Chapman, Philos. Mag. 8, 1543 (1963).CrossRefGoogle Scholar
  40. 40.
    M.R. Barnett, Z. Keshavarz, A.G. Beer, and D. Atwell, Acta Mater. 52, 5093 (2004).CrossRefGoogle Scholar
  41. 41.
    G. Gottstein and L.S. Shvindlerman, Grain Boundary Migration in Metals: Thermodynamics, Kinetics, Applications (Boca Raton, FL: CRC Press, Taylor & Francis Group, 2010).Google Scholar
  42. 42.
    A.D. Südholz, N.T. Kirkland, R.G. Buchheit, and N. Birbilis, Electrochem. Solid-State Lett. 14, C5 (2011).CrossRefGoogle Scholar
  43. 43.
    P.A. Manohar, M. Ferry, and T. Chandra, ISIJ Int. 38, 913 (1998).CrossRefGoogle Scholar
  44. 44.
    J.D. L’Ecuyer and G. L’Espérance, Acta Metall. 37, 1023 (1989).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2014

Authors and Affiliations

  • J. Hofstetter
    • 1
  • M. Becker
    • 1
  • E. Martinelli
    • 2
  • A. M. Weinberg
    • 2
  • B. Mingler
    • 3
  • H. Kilian
    • 4
  • S. Pogatscher
    • 1
  • P. J. Uggowitzer
    • 1
  • J. F. Löffler
    • 1
    Email author
  1. 1.Laboratory of Metal Physics and Technology, Department of MaterialsETH ZurichZurichSwitzerland
  2. 2.Department of OrthopedicsMedical University GrazGrazAustria
  3. 3.Health & Environment Department, AIT Austrian Institute of Technology GmbHBiomedical SystemsWr. NeustadtAustria
  4. 4.Department of MobilityAIT Austrian Institute of Technology GmbH, Light Metals Technologies, LKRRanshofenAustria

Personalised recommendations