, Volume 66, Issue 4, pp 573–579 | Cite as

Immunological Response to Biodegradable Magnesium Implants

  • Karin PichlerEmail author
  • Stefan Fischerauer
  • Peter Ferlic
  • Elisabeth Martinelli
  • Hans-Peter Brezinsek
  • Peter J. Uggowitzer
  • Jörg F. Löffler
  • Annelie-Martina Weinberg


The use of biodegradable magnesium implants in pediatric trauma surgery would render surgical interventions for implant removal after tissue healing unnecessary, thereby preventing stress to the children and reducing therapy costs. In this study, we report on the immunological response to biodegradable magnesium implants—as an important aspect in evaluating biocompatibility—tested in a growing rat model. The focus of this study was to investigate the response of the innate immune system to either fast or slow degrading magnesium pins, which were implanted into the femoral bones of 5-week-old rats. The main alloying element of the fast-degrading alloy (ZX50) was Zn, while it was Y in the slow-degrading implant (WZ21). Our results demonstrate that degrading magnesium implants beneficially influence the immune system, especially in the first postoperative weeks but also during tissue healing and early bone remodeling. However, rodents with WZ21 pins showed a slightly decreased phagocytic ability during bone remodeling when the degradation rate reached its maximum. This may be due to the high release rate of the rare earth-element yttrium, which is potentially toxic. From our results we conclude that magnesium implants have a beneficial effect on the innate immune system but that there are some concerns regarding the use of yttrium-alloyed magnesium implants, especially in pediatric patients.


Magnesium Alloy Innate Immune System Elastic Stable Intramedullary Nail Phagocytic Ability Biodegradable Implant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors acknowledge support from the Laura Bassi Center of Expertise BRIC (Bioresorbable Implants for Children; FFG—Austria). The authors would also like to thank Ms. Katharina Angerpointer (Department of Pediatric Surgery, Medical University of Graz, Austria) and Ms. Verena Krischnan for their help with collection and workup of the blood specimens.


  1. 1.
    N. Simanovsky, M.A. Tair, N. Simanovsky, and S. Porat, J. Pediatr. Orthop. 26, 188 (2006).CrossRefGoogle Scholar
  2. 2.
    E.M. Raney, D.M. Freccero, L.A. Dolan, D.E. Lighter, R.R. Fillman, and H.G. Chambers, J. Pediatr. Orthop. 28, 701 (2008).CrossRefGoogle Scholar
  3. 3.
    P.O. Newton and S.J. Mubarak, J. Pediatr. Orthop. 14, 508 (1994).CrossRefGoogle Scholar
  4. 4.
    L.E. Claes, Clin. Mater. 10, 41 (1992).CrossRefGoogle Scholar
  5. 5.
    M.P. Staiger, A.M. Pietak, J. Huadmai, and G. Dias, Biomaterials 27, 1728 (2006).CrossRefGoogle Scholar
  6. 6.
    D. Persaud-Sharma, A. McGoron, and J. Biomim, Biomater. Tissue Eng. 3, 25 (2012).CrossRefGoogle Scholar
  7. 7.
    B. Zberg, P.J. Uggowitzer, and J.F. Löffler, Nat. Mater. 8, 887 (2009).CrossRefGoogle Scholar
  8. 8.
    E. Aghion, G. Levy, and S. Ovadia, J. Mater. Sci. Mater. Med. 23, 805 (2012).CrossRefGoogle Scholar
  9. 9.
    A.C. Hänzi, I. Gerber, M. Schinhammer, J.F. Löffler, and P.J. Uggowitzer, Acta Biomater. 6, 1824 (2010).CrossRefGoogle Scholar
  10. 10.
    Z.G. Huan, M.A. Leeflang, J. Zhou, L.E. Fratila-Apachitei, and J. Duszczyk, J. Mater. Sci. Mater. Med. 21, 2623 (2010).CrossRefGoogle Scholar
  11. 11.
    A. Krause, N. Höh, D. Bormann, C. Krause, F.W. Bach, H. Windhagen, and A. Meyer-Lindenberg, J. Mater. Sci. 45, 624 (2010).CrossRefGoogle Scholar
  12. 12.
    F. Witte, N. Hort, C. Vogt, S. Cohen, K.U. Kainer, R. Willumeit, and F. Feyerabend, Curr. Opin. Solid State Mater. Sci. 12, 63 (2008).CrossRefGoogle Scholar
  13. 13.
    F. Witte, V. Kaese, H. Haferkamp, E. Switzer, A. Meyer-Lindenberg, C.J. Wirth, and H. Windhagen, Biomaterials 26, 3557 (2005).CrossRefGoogle Scholar
  14. 14.
    P.A. Lalor, P.A. Revell, A.B. Gray, S. Wright, G.T. Railton, and M.A. Freeman, J. Bone Joint Surg. Br. 73, 25 (1991).Google Scholar
  15. 15.
    K. Merritt and J.J. Rodrigo, Clin. Orthop. Relat. Res. 326, 71 (1996).CrossRefGoogle Scholar
  16. 16.
    N. Hallab, J.J. Jacobs, and J. Black, Biomaterials 21, 1301 (2000).CrossRefGoogle Scholar
  17. 17.
    K.H. Lam, J.M. Schakenraad, H. Esselbrugge, J. Feijen, and P. Nieuwenhuis, J. Biomed. Mater. Res. 27, 1569 (1993).CrossRefGoogle Scholar
  18. 18.
    Q. Rahman, M. Lohani, E. Dopp, H. Pemsel, L. Jonas, D.G. Weiss, and D. Schiffmann, Environ. Health Perspect. 110, 797 (2002).CrossRefGoogle Scholar
  19. 19.
    L. Wang, J. Mao, G.H. Zhang, and M.J. Tu, World J. Gastroenterol. 7, 4011 (2007).Google Scholar
  20. 20.
    F. Witte, H. Ulrich, M. Rudert, and E. Willbold, J. Biomed. Mater. Res. A 81, 748 (2007).CrossRefGoogle Scholar
  21. 21.
    T. Kraus, S.F. Fischerauer, A.C. Hänzi, P.J. Uggowitzer, J.F. Löffler, and A.M. Weinberg, Acta Biomater. 8, 1230 (2012).CrossRefGoogle Scholar
  22. 22.
    P. Gunde, A.C. Hänzi, A.S. Sologubenko, and P.J. Uggowitzer, Mater. Sci. Eng. A 528, 1047 (2011).CrossRefGoogle Scholar
  23. 23.
    W. Hirt, T. Nebe, and C. Birr, Wien. Klin. Wochenschr. 106, 250 (1994).Google Scholar
  24. 24.
    S.F. Fischerauer, T. Kraus, X. Wu, S. Tangl, E. Sorantin, A.C. Hänzi, J.F. Löffler, P.J. Uggowitzer, and A.M. Weinberg, Acta Biomater. 9, 5411 (2013).CrossRefGoogle Scholar
  25. 25.
    A.C. Hänzi, A.S. Sologubenko, P. Gunde, M. Schinhammer, and P.J. Uggowitzer, Philos. Mag. Lett. 92, 417 (2012).CrossRefGoogle Scholar
  26. 26.
    H.R. Bakhsheshi-Rad, M.R.A. Kadir, M.H. Idris, and S. Farahany, Corrosion Science Conference Proceedings (2012).Google Scholar
  27. 27.
    A.C. Hänzi, A.S. Sologubenko, and P.J. Uggowitzer, Materials Science Forum Conference Proceedings (2009).Google Scholar
  28. 28.
    M. Yamasaki, K. Nyu, and Y. Kawamura, Materials Science Forum Conference Proceedings (2003).Google Scholar
  29. 29.
    D. Fröhlich, G. Rothe, B. Schwall, P. Schmid, G. Schmitz, K. Taeger, and J. Hobbhahn, Br. J. Anaesth. 78, 718 (1997).CrossRefGoogle Scholar
  30. 30.
    M. Nakagawara, K. Takeshige, J. Takamatsu, S. Takahashi, J. Yoshitake, and S. Minakami, Anesthesiology 64, 4 (1986).CrossRefGoogle Scholar
  31. 31.
    S. Kurosawa and M. Kato, J. Anesth. 22, 263 (2008).CrossRefGoogle Scholar
  32. 32.
    M.D. Menger and B. Vollmar, Langenbecks Arch. Surg. 389, 475 (2004).CrossRefGoogle Scholar
  33. 33.
    B.V. Hogan, M.B. Peter, H.G. Shenoy, K. Horgan, and T.A. Hughes, Surgeon 9, 38 (2011).CrossRefGoogle Scholar
  34. 34.
    M.E. Bolander, Proc. Soc. Exp. Biol. Med. 200, 165 (1992).CrossRefGoogle Scholar
  35. 35.
    F. Witte, I. Abeln, E. Switzer, V. Kaese, A. Meyer-Lindenberg, and H. Windhagen, J. Biomed. Mater. Res. A 86, 1041 (2008).CrossRefGoogle Scholar
  36. 36.
    A. Bondarenko, M. Hewicker-Trautwein, N. Erdmann, N. Angrisani, J. Reifenrath, and A. Meyer-Lindenberg, Biomed. Eng. Online 10, 32 (2011).CrossRefGoogle Scholar
  37. 37.
    M. Thomsen, M. Rozak, and P. Thomas, Acta Orthop. 82, 386 (2011).CrossRefGoogle Scholar
  38. 38.
    B. Summer, C. Paul, F. Mazoochian, C. Rau, M. Thomsen, I. Banke, H. Gollwitzer, K.A. Dietrich, S. Mayer-Wagner, T. Ruzicka, and P. Thomas, Contact Dermatitis 63, 15 (2010).CrossRefGoogle Scholar
  39. 39.
    P. Thomas, W.D. Bandl, S. Maier, B. Summer, and B. Przybilla, Contact Dermatitis 55, 199 (2006).CrossRefGoogle Scholar
  40. 40.
    P. Thomas, A. Schuh, R. Eben, and M. Thomsen, Orthopade 37, 117 (2008).CrossRefGoogle Scholar
  41. 41.
    J.Y. Wang, B.H. Wicklund, R.B. Gustilo, and D.T. Tsukayama, Clin. Orthop. Relat. Res. 339, 216 (1997).CrossRefGoogle Scholar
  42. 42.
    D.R. Haynes, T.N. Crotti, and H. Zreiqat, Biomaterials 25, 4877 (2004).CrossRefGoogle Scholar
  43. 43.
    T. Rae, J. Bone Joint Surg. Br. 57, 444 (1975).Google Scholar
  44. 44.
    R. Garrett, J. Wilksch, and B. Vernon-Roberts, Aust. J. Exp. Biol. Med. Sci. 61, 355 (1983).CrossRefGoogle Scholar
  45. 45.
    S.K. Butcher, H. Chahal, L. Nayak, A. Sinclair, N.V. Henriquez, E. Sapey, D. O’Mahony, and J.M. Lord, J. Leukoc. Biol. 70, 881 (2001).Google Scholar
  46. 46.
    A. Filias, G.L. Theodorou, S. Mouzopoulou, A.A. Varvarigou, S. Mantagos, and M. Karakantza, BMC Pediatr. 11, 29 (2011).CrossRefGoogle Scholar
  47. 47.
    W. Cantrell and E.E. Elko, Exp. Parasitol. 34, 337 (1973).CrossRefGoogle Scholar
  48. 48.
    A. Drynda, N. Deinet, N. Braun, and M. Peuster, J. Biomed. Mater. Res. A 91, 360 (2009).CrossRefGoogle Scholar
  49. 49.
    F. Feyerabend, J. Fischer, J. Holtz, F. Witte, R. Willumeit, H. Drücker, C. Vogt, and N. Hort, Acta Biomater. 6, 1834 (2010).CrossRefGoogle Scholar
  50. 50.
    C.T. Horovitz, Biochemistry of Scandium and Yttrium, Part 2: Biochemistry and Applications (Biochemistry of the Elements), 1st ed. (New York: Kluwer Academic/Plenum Publishers, 2000), pp. 83–136 and pp. 208–210Google Scholar
  51. 51.
    S. Hirano and K.T. Suzuki, Environ. Health Perspect. 104, 85 (1996).Google Scholar
  52. 52.
    W.H. Wells and V.L. Wells, Patty’s Toxicology (Hoboken, NJ: Wiley, 2000).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2014

Authors and Affiliations

  • Karin Pichler
    • 1
    Email author
  • Stefan Fischerauer
    • 1
  • Peter Ferlic
    • 2
  • Elisabeth Martinelli
    • 1
  • Hans-Peter Brezinsek
    • 3
  • Peter J. Uggowitzer
    • 4
  • Jörg F. Löffler
    • 4
  • Annelie-Martina Weinberg
    • 1
  1. 1.Department of Orthopaedic SurgeryMedical University of GrazGrazAustria
  2. 2.Department of Orthopaedic SurgeryMedical University of InnsbruckInnsbruckAustria
  3. 3.Department of Rheumatology and ImmunologyMedical University of GrazGrazAustria
  4. 4.Laboratory of Metal Physics and Technology, Department of MaterialsZurichSwitzerland

Personalised recommendations