JOM

, Volume 66, Issue 1, pp 165–170 | Cite as

Orientation Mapping via Precession-Enhanced Electron Diffraction and Its Applications in Materials Science

Article

Abstract

Precession-enhanced diffraction (PED) is a transmission electron microscopy technique that allows for pseudo-kinematical diffraction conditions to occur. Using collected spot patterns, PED has successfully been demonstrated to provide for phase and orientation mapping in a variety of materials. One major advantage of PED is the fine spatial resolution, on the order of a few nanometers, allowing previously inaccessible grain boundary orientation mapping of nanostructured materials to be realized. This article provides a basic overview of the emerging technique with selected highlights of its application to materials science and engineering.

References

  1. 1.
    O. Anderoglu, A. Misra, H. Wang, and X. Zhang, J. Appl. Phys. 103, 094322 (2008).CrossRefGoogle Scholar
  2. 2.
    E.A. Holm, G.N. Hassold, and M.A. Miodownik, Acta Mater. 49, 2981 (2001).CrossRefGoogle Scholar
  3. 3.
    G. Gottstein and L.S. Shvindlerman, Grain Boundary Migration in Metals (Boca Raton, FL: CRC Press, 2010).Google Scholar
  4. 4.
    G.S. Rohrer, J. Mater. Sci. 46, 5881 (2011).CrossRefGoogle Scholar
  5. 5.
    R.E. Reed-Hill, Physical Metallurgy Principles (Dorset: PWS Engineering, 1973).Google Scholar
  6. 6.
    D. Dingley, J. Microsc. 213, 214 (2004).CrossRefMathSciNetGoogle Scholar
  7. 7.
    S. Zaefferer, Ultramicroscopy 107, 254 (2007).CrossRefGoogle Scholar
  8. 8.
    A.J. Schwartz, M. Kumar, B.L. Adams, and D.P. Field, Electron Backscatter Diffraction in Materials Science, 2nd ed. (New York: Springer, 2009).CrossRefGoogle Scholar
  9. 9.
    J.H. Driver, D.J. Jensen, and N. Hansen, Acta Mater. 42, 3105 (1994).Google Scholar
  10. 10.
    S. Zaefferer, Cryst. Res. Technol. 46, 607 (2011).CrossRefGoogle Scholar
  11. 11.
    D.J. Dingley and M.M. Nowell, Microchim. Acta. 147, 157 (2004).CrossRefGoogle Scholar
  12. 12.
    P. Moeck, S. Rouvimov, E.F. Rauch, M. Veron, H. Kirmse, I. Hausler, W. Neumann, D. Bultreys, Y. Maniette, and S. Nicolopoulos, Cryst. Res. Technol. 46, 589 (2011).CrossRefGoogle Scholar
  13. 13.
    D.J. Dingley, Microchim. Acta 155, 19 (2006).CrossRefGoogle Scholar
  14. 14.
    G. Wu and S. Zaefferer, Ultramicroscopy 109, 1317 (2009).CrossRefGoogle Scholar
  15. 15.
    A.S. Eggeman and P.A. Midgley, Adv. Imag. Electron Phys. 170, 1 (2010).CrossRefGoogle Scholar
  16. 16.
    B.F. Buxton, J.E. Loveluck, and J.W. Steeds, Philos. Mag. A 38, 259 (1977).CrossRefGoogle Scholar
  17. 17.
    J.R. Sellar, D. Imeson, and C.J. Humphreys, Acta Cryst. A. 36, 686 (1980).CrossRefGoogle Scholar
  18. 18.
    M.A. Tabbernor, A.G. Fox, and R.M. Fisher, Acta Cryst. A. 46, 165 (1990).CrossRefGoogle Scholar
  19. 19.
    D.M. Bird and M. Saunders, Ultramicroscopy 45, 241 (1991).CrossRefGoogle Scholar
  20. 20.
    J.M. Zuo and J.C.H. Spence, Ultramicroscopy 35, 185 (1991).CrossRefGoogle Scholar
  21. 21.
    P.A. Midgley and M. Saunders, Contemp. Phys. 37, 441 (1996).CrossRefGoogle Scholar
  22. 22.
    P.N.H. Nakashima and B.C. Muddle, Phys. Rev. B. 81, 115135 (2010).CrossRefGoogle Scholar
  23. 23.
    J. Taftø and J. Gjønnes, Ultramicroscopy 17, 329 (1985).CrossRefGoogle Scholar
  24. 24.
    J. Taft, Y. Zhu, and L. Wu, Acta Cryst. A. 54, 532 (1998).CrossRefGoogle Scholar
  25. 25.
    R. Vincent, D.M. Bird, and J.W. Steeds, Philos. Mag. A. 50, 745 (1984).Google Scholar
  26. 26.
    R. Vincent, D.M. Bird, and J.W. Steeds, Philos. Mag. A. 50, 765 (1984).Google Scholar
  27. 27.
    R. Vincent and P.A. Midgley, Ultramicroscopy 53, 271 (1994).CrossRefGoogle Scholar
  28. 28.
    K.J. Ganesh, M. Kawasaki, J.P. Zhou, and P.J. Ferreira, Microsc. Microanal. 16, 614 (2010).CrossRefGoogle Scholar
  29. 29.
    Y. Liao and L.D. Marks, Ultramicroscopy 117, 1 (2012).CrossRefGoogle Scholar
  30. 30.
    NanoMEGAS website. http://www.nanomegas.com/. Accessed 21 Sept 2013.
  31. 31.
    J.P. Morniroli, A. Redjaimia, and S. Nicolopoulos, Ultramicroscopy 107, 514 (2007).CrossRefGoogle Scholar
  32. 32.
    A. Avilov, K. Kulgin, S. Nicolopoulos, M. Nickolskiy, K. Boulahyad, J. Portillo, G. Lepeshov, B. Sobolev, J.P. Collette, N. Martin, A.C. Robins, and P. Fischione, Ultramicroscopy 107, 431 (2007).CrossRefGoogle Scholar
  33. 33.
    D. Zhang, D. Gruner, P. Oleynikov, W. Wan, S. Hovmoller, and X. Zou, Ultramicroscopy 111, 47 (2010).CrossRefGoogle Scholar
  34. 34.
    C.T. Koch, P. Bellina, and P.A. van Aken, 14th European Microscopy Congress (EMC), vol. 2 (New York: Materials Science, Springer, 2008), p. 201.Google Scholar
  35. 35.
    H. Mohseni, P.C. Collins, and T.W. Scharf, Nanomater. Energy 1, 318 (2012).CrossRefGoogle Scholar
  36. 36.
    A.D. Darbal, K.J. Ganesh, X. Liu, S.-B. Lee, J. Ledonne, T. Sun, B. Yao, A.P. Warren, G.S. Rohrer, A.D. Rollett, P.J. Ferreira, K.R. Coffey, and K. Barmak, Microsc. Microanal. 19, 111 (2013).CrossRefGoogle Scholar
  37. 37.
    B. Feldman, S. Park, M. Haverty, S. Shankar, and S.T. Dunham, Phys. Status Solidi B 247, 1791 (2010).CrossRefGoogle Scholar
  38. 38.
    K.J. Ganesh, S. Rajasekhara, J.P. Zhou, and P.J. Ferreira, Scripta Mater. 62, 843 (2010).CrossRefGoogle Scholar
  39. 39.
    K.J. Ganesh, A.D. Darbal, S. Rajasekhara, G.S. Rohrer, K. Barmak, and P.J. Ferreira, Nanotechnology 23, 135702 (2012).CrossRefGoogle Scholar
  40. 40.
    T. LaGrange, B.W. Reed, M. Wall, J. Mason, T. Barbee, and M. Kumar, Appl. Phys. Lett. 102, 011905 (2013).CrossRefGoogle Scholar
  41. 41.
    Y.M. Wang, F. Sansoz, T. LaGrange, R.T. Ott, J. Marian, T.W. Barbee, and A.V. Hamza, Nat. Mater. 12, 697 (2013).CrossRefGoogle Scholar
  42. 42.
    A. Albou, M. Galceran, K. Renard, S. Godet, and P.J. Jacques, Scripta Mater. 68, 400 (2013).CrossRefGoogle Scholar
  43. 43.
    B. Wang, H. Idrissi, M. Galceran, M.S. Colla, S. Turner, S. Hui, J.P. Raskin, T. Pardoen, S. Godet, and D. Schryvers, Int. J. Plast. 37, 140 (2012).CrossRefGoogle Scholar
  44. 44.
    J.G. Brons and G.B. Thompson, Acta Mater. 61, 3936 (2013).CrossRefGoogle Scholar
  45. 45.
    J.G. Brons and G.B. Thompson, Thin Solid Films (2013, accepted for publication).Google Scholar
  46. 46.
    E.A. Holm, G.S. Rohrer, S.M. Foiles, A.D. Rollett, H.M. Miller, and D.L. Olmsted, Acta Mater. 59, 5250 (2011).CrossRefGoogle Scholar
  47. 47.
    X. Liu, D. Choi, H. Beladi, N.T. Nuhfer, G.S. Rohrer, and K. Barmak, Scripta Mater. 69, 413 (2013).CrossRefGoogle Scholar
  48. 48.
    M.A. Tschopp, K.N. Solanki, F. Gao, X. Sun, M.A. Khaleel, and M.F. Horstemeyer, Phys. Rev. B. 85, 1 (2012).CrossRefGoogle Scholar
  49. 49.
    H. Beladi and G.S. Rohrer, Acta Mater. 61, 1404 (2013).CrossRefGoogle Scholar
  50. 50.
    H. Mohseni and T.W. Scharf, J. Vac. Sci. Technol. A 30, 1 (2012).CrossRefGoogle Scholar
  51. 51.
    E.F. Rauch, J. Portillo, S. Nicolopoulos, D. Bultreys, S. Rouvimov, and P. Moeck, Z. Kristallogr. 225, 103 (2010).CrossRefGoogle Scholar
  52. 52.
    E. Mugnaioli, T. Gorelik, and U. Kolb, Ultramicroscopy 109, 758 (2009).CrossRefGoogle Scholar
  53. 53.
    C.S. Own, W. Sinkler, and L.D. Marks, Ultramicroscopy 106, 114 (2006).CrossRefGoogle Scholar
  54. 54.
    K. Boulahya, L. Ruiz-Gonzalez, M. Parras, J.M. Gonzaele-Calbert, M.S. Nickolsky, and S. Nicolopoulos, Ultramicroscopy 107, 445 (2007).CrossRefGoogle Scholar
  55. 55.
    S. Estrade, J. Portillo, Ll Yedra, J.M. Rebled, and F. Peiro, Ultramicroscopy 116, 135 (2012).CrossRefGoogle Scholar
  56. 56.
    J.M. Rebled, L. Yedra, S. Estrade, J. Portillo, and F. Peiro, Ultramicroscopy 111, 1504 (2011).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2013

Authors and Affiliations

  1. 1.Department of Materials and Metallurgical EngineeringUniversity of AlabamaTuscaloosaUSA
  2. 2.Seagate TechnologyBloomingtonUSA

Personalised recommendations