Advertisement

JOM

, Volume 66, Issue 1, pp 156–164 | Cite as

Effect of Crystalline Structure on Intergranular Failure During Shock Loading

  • J. P. EscobedoEmail author
  • E. K. Cerreta
  • D. Dennis-Koller
Article

Abstract

The effect of crystalline structure on intergranular failure during shock loading has been examined. A suite of dynamic tensile experiments, using plate-impact testing, were conducted on copper (face-centered cubic) and tantalum (body-centered cubic) specimens with different grain sizes (30–200 μm). These experiments were designed to probe void nucleation, growth, and coalescence processes that for these materials are known to lead to failure. For the grain sizes examined in the study, post-impact metallographic analyses show that in copper specimens, during the early stages of deformation, voids were present primarily at general or low-coincidence, high-angle grain boundaries (GBs), irrespective of grain size. In tantalum, while some voids developed along the GBs, an increasing amount of transgranular damage was observed as the grain size increased. A scenario based on the availability of potential nucleation sites and number of slip systems inherent to each crystalline structure is discussed. The role that this availability plays in either promoting or hindering plastic processes leading to damage nucleation and growth is then examined.

Keywords

Tantalum Damage Evolution Misorientation Angle Void Growth Void Nucleation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

Los Alamos National Laboratory is operated by LANS, LLC, for the NNSA of the U.S. Department of Energy under contract DE-AC52-06NA25396. Funding was provided by the LDRD-DR Grant 20100026.

References

  1. 1.
    L.E. Murr, Shock Waves and High Strain Rate Phenomena in Metals, ed. M.A. Meyers and L.E. Murr (New York: Plenum Press, 1981), p. 753.CrossRefGoogle Scholar
  2. 2.
    T. Antoun, L. Seaman, D. Curran, G. Kanel, S. Razonerov, and A. Utkin, Spall Fracture (New York: Springer, 2002).Google Scholar
  3. 3.
    J.N. Johnson, J. Appl. Phys. 52, 2812 (1981).CrossRefGoogle Scholar
  4. 4.
    D.R. Curran, L. Seaman, and D.A. Shockey, Phys. Today 30, 46 (1977).CrossRefGoogle Scholar
  5. 5.
    G.T. Gray, High Pressure Shock Compression of Solids, ed. J.R. Asay and M. Shahinpoor (New York: Springer, 1993), p. 187.CrossRefGoogle Scholar
  6. 6.
    L. Seaman, D.R. Curran, and D.A. Shockey, J. Appl. Phys. 47, 4814 (1976).CrossRefGoogle Scholar
  7. 7.
    M.A. Meyers and C.T. Aimone, Prog. Mater. Sci. 28, 1 (1983).CrossRefGoogle Scholar
  8. 8.
    T.A. Bamford, B. Hardiman, Z. Shen, W.A.T. Clark, and R.H. Wagoner, Scripta Metall. Mater. 20, 253 (1986).Google Scholar
  9. 9.
    J. Buchar, M. Elices, and R. Cortez, J. Phys. IV 1, 623 (1991).CrossRefGoogle Scholar
  10. 10.
    J.N. Johnson, G.T. Gray, and N.K. Bourne, J. Appl. Phys. 86, 4892 (1999).CrossRefGoogle Scholar
  11. 11.
    G.I. Kanel, J. Appl. Mech. Tech. Phys. 42, 358 (2001).CrossRefGoogle Scholar
  12. 12.
    R.W. Minich, J.U. Cazamias, M. Kumar, and A.J. Schwartz, Metall. Mater. Trans. A 35A, 2663 (2004).CrossRefGoogle Scholar
  13. 13.
    D.D. Koller, R.S. Hixson, G.T. Gray, P.A. Rigg, L.B. Addessio, E.K. Cerreta, J.D. Maestas, and C.A. Yablinsky, J. Appl. Phys. 98, 103518 (2005).CrossRefGoogle Scholar
  14. 14.
    D.L. Tonks, B.L. Henrie, C.P. Trujillo, D. Holtkamp, and W.R. Thissell, Shock Compress. Condens. Matter 845, 670 (2006).Google Scholar
  15. 15.
    P. Peralta, S. DiGiacomo, S. Hashemian, S.N. Luo, D. Paisley, R. Dickerson, E. Loomis, D. Byler, and K.J. McClellan, Int. J. Damage Mech. 18, 393 (2009).CrossRefGoogle Scholar
  16. 16.
    L. Wayne, K. Krishnan, S. DiGiacomo, N. Kovvali, P. Peralta, S.N. Luo, S. Greenfield, D. Byler, D. Paisley, K.J. McClellan, A. Koskelo, and R. Dickerson, Scripta Mater. 63, 1065 (2010).CrossRefGoogle Scholar
  17. 17.
    J.P. Escobedo, E.K. Cerreta, D. Dennis-Koller, C.P. Trujillo, and C.A. Bronkhorst, Philos. Mag. 93, 833 (2013).CrossRefGoogle Scholar
  18. 18.
    J.P. Escobedo, D. Dennis-Koller, E.K. Cerreta, B.M. Patterson, C.A. Bronkhorst, B.L. Hansen, D. Tonks, and R.A. Lebensohn, J. Appl. Phys. 110, 103513 (2011).CrossRefGoogle Scholar
  19. 19.
    J.P. Escobedo, D. Dennis-Koller, E.K. Cerreta, and C.A. Bronkhorst, American Institute of Physics Conference Proceedings, vol. 1426, p. 1321 (2012).Google Scholar
  20. 20.
    E.K. Cerreta, J.P. Escobedo, A. Perez-Bergquist, D.D. Koller, C.P. Trujillo, G.T. Gray, C. Brandl, and T.C. Germann, Scripta Mater. 66, 638 (2012).CrossRefGoogle Scholar
  21. 21.
    R.A. Lebensohn, J.P. Escobedo, E.K. Cerreta, D. Dennis-Koller, C.A. Bronkhorst, and J.F. Bingert, Acta Mater. 61, 6918 (2013).CrossRefGoogle Scholar
  22. 22.
    L.M. Barker and Re Hollenba, J. Appl. Phys. 43, 4669 (1972).CrossRefGoogle Scholar
  23. 23.
    W.F. Hemsing, Rev. Sci. Instrum. 50, 73 (1979).CrossRefGoogle Scholar
  24. 24.
    O.T. Strand, D.R. Goosman, C. Martinez, T.L. Whitworth, and W.W. Kuhlow, Rev. Sci. Instrum. 77, 083108 (2006).CrossRefGoogle Scholar
  25. 25.
    D. Dennis-Koller, J.P. Escobedo-Diaz, E.K. Cerreta, C.A. Bronkhorst, B. Hansen, R. Lebensohn, H. Mourad, B. Patterson, and D. Tonks, American Institute of Physics Conference Proceedings, vol. 1426, p. 1325 (2012).Google Scholar
  26. 26.
    W.R. Thissell, A.K. Zurek, D.A.S. Macdougall, and D. Tonks, J. Phys. IV 10, 769 (2000).Google Scholar
  27. 27.
    W.R. Thissell, A.K. Zurek, D.L. Tonks, and R.S. Hixson, Shock Compress. Condens. Matter 505, 451 (2000).Google Scholar
  28. 28.
    A.K. Zurek, W.R. Thissell, J.N. Johnson, D.L. Tonks, and R. Hixson, J. Mater. Process Tech. 60, 261 (1996).CrossRefGoogle Scholar
  29. 29.
    V. Tvergaard and J.W. Hutchinson, J. Mech. Phys. Solids 40, 1377 (1992).CrossRefzbMATHGoogle Scholar
  30. 30.
    V. Tvergaard and J.W. Hutchinson, Int. J. Solids Struct. 39, 3581 (2002).CrossRefzbMATHGoogle Scholar
  31. 31.
    S.J. Fensin, S.M. Valone, E.K. Cerreta, J.P. Escobedo-Diaz, G.T. Gray, K. Kang, and J. Wang, Model Simul. Mater. Sci. 21, 015011 (2013).CrossRefGoogle Scholar
  32. 32.
    J.P. Hirth, Metall. Trans. 3, 3047 (1972).CrossRefGoogle Scholar
  33. 33.
    L.M. Hsiung and D.H. Lassila, Scripta Mater. 38, 1371 (1998).CrossRefGoogle Scholar
  34. 34.
    L.M. Hsiung and D.H. Lassila, Acta Mater. 48, 4851 (2000).CrossRefGoogle Scholar
  35. 35.
    J.C. Huang and G.T. Gray, Acta Metall. Mater. 37, 3335 (1989).CrossRefGoogle Scholar
  36. 36.
    L.H. Yang, P. Soderlind, and J.A. Moriarty, Mater. Sci. Eng. A 309, 102 (2001).CrossRefGoogle Scholar
  37. 37.
    L.H. Yang, P. Soderlind, and J.A. Moriarty, Philos. Mag. A 81, 1355 (2001).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2013

Authors and Affiliations

  • J. P. Escobedo
    • 1
    Email author
  • E. K. Cerreta
    • 2
  • D. Dennis-Koller
    • 2
  1. 1.The University of New South WalesCanberra BCAustralia
  2. 2.Los Alamos National LaboratoryLos AlamosUSA

Personalised recommendations