JOM

, Volume 65, Issue 11, pp 1523–1532 | Cite as

Methods for First-Principles Alloy Thermodynamics

Article

Abstract

Traditional first-principles calculations excel at providing formation energies at absolute zero, but obtaining thermodynamic information at nonzero temperatures requires suitable sampling of all the excited states visited in thermodynamic equilibrium, which would be computationally prohibitive via brute-force quantum mechanical calculations alone. In the context of solid-state alloys, this issue can be addressed via the coarse-graining concept and the cluster expansion formalism. This process generates simple, effective Hamiltonians that accurately reproduce quantum mechanical calculation results and that can be used to efficiently sample configurational, vibrational, and electronic excitations and enable the prediction of thermodynamic properties at nonzero temperatures. Vibrational and electronic degrees of freedom are formally eliminated from the problem by writing the system’s partition function in a nested form in which the inner sums can be readily evaluated to yield an effective Hamiltonian. The remaining outermost sum corresponds to atomic configurations and can be handled via Monte Carlo sampling driven by the resulting effective Hamiltonian, thereby delivering thermodynamic properties at nonzero temperatures. This article describes these techniques and their implementation in the alloy theoretic automated toolkit, an open-source software package. The methods are illustrated by applications to various alloy systems.

Notes

Acknowledgements

This work is supported by the National Science Foundation via grants DMR-1154895 and DMR-0907669, and by the Office of Naval Research via grants N00014-12-1-0557 and N00014-12-1-0196. ATAT was made possible by a number of contributors, including, Yi Wang, Dongwong Shin, Volker Blum, Mayeul d’Avezac, Gautam Ghosh, Zhe Liu, Greg Pomrehn, Balaji Gopal Chirranjeevi, and Pratyush Tiwary, and by a number of long-time supporters, including Mark Asta, Gerd Ceder, Zi-Kui Liu, Raymundo Arroyave, and Ben Burton.

References

  1. 1.
    P. Hohenberg and W. Kohn, Phys. Rev. B 136, B864 (1964).MathSciNetGoogle Scholar
  2. 2.
    W. Kohn and L.J. Sham, Phys. Rev. A 140, A1133 (1965).MathSciNetGoogle Scholar
  3. 3.
    R.M. Dreizler and E.K.U. Gross, Density Functional Theory: an Approach to the Quantum Many-Body Problem (Berlin: Springer, 1990).MATHGoogle Scholar
  4. 4.
    M.C. Payne, M.P. Teter, D.C. Allan, T.A. Arias, and J.D. Joannopoulos, Rev. Mod. Phys. 64, 1045 (1992).Google Scholar
  5. 5.
    Y. Wang, S. Curtarolo, C. Jiang, R. Arroyave, T. Wang, G. Ceder, L.Q. Chen, and Z.K. Liu, CALPHAD 28, 79 (2004).Google Scholar
  6. 6.
    J.M. Sanchez, F. Ducastelle, and D. Gratias, Physica 128A, 334 (1984).MathSciNetGoogle Scholar
  7. 7.
    F. Ducastelle, Order and Phase Stability in Alloys (New York: Elsevier Science, 1991).Google Scholar
  8. 8.
    D. de Fontaine, Solid State Phys. 47, 33 (1994).Google Scholar
  9. 9.
    A. Zunger, NATO ASI on Statics and Dynamics of Alloy Phase Transformation, vol. 319, ed. P.E. Turchi and A. Gonis (New York: Plenum Press, 1994), p. 361.Google Scholar
  10. 10.
    A. Zunger, MRS Bull. 22, 20 (1997).Google Scholar
  11. 11.
    C. Wolverton, V. Ozoliņš, and A. Zunger, J. Phys. Condens. Mater. 12, 2749 (2000).Google Scholar
  12. 12.
    G. Ceder, A. van der Ven, C. Marianetti, and D. Morgan, Model. Simul. Mater. Sci. 8, 311 (2000).Google Scholar
  13. 13.
    M. Asta, V. Ozolins, and C. Woodward, JOM 53 (9), 16 (2001).Google Scholar
  14. 14.
    A. van de Walle and G. Ceder, Rev. Mod. Phys. 74, 11 (2002).Google Scholar
  15. 15.
    A. van de Walle, Multiscale Modeling: From Atoms to Devices, ed. P. Derosa and T. Cagin (Boca Raton, FL: CRC Press, 2010).Google Scholar
  16. 16.
    A. van de Walle, G. Ghosh, and M. Asta, Applied Computational Materials Modeling: Theory, Simulation and Experiment, ed. G. Bozzolo, R. Noebe, and P. Abel (Dordrecht, the Netherlands: Kluwer Academic Publishers, 2005).Google Scholar
  17. 17.
    A. van de Walle and M. Asta, Handbook of Materials Modeling, Part A, ed. S. Yip (Dordrecht, the Netherlands: Springer, 2005).Google Scholar
  18. 18.
    A.V. Ruban and I.A. Abrikosov, Rep. Prog. Phys. 71, 046501 (2008).Google Scholar
  19. 19.
    A. van de Walle, CALPHAD 33, 266 (2009).Google Scholar
  20. 20.
    A. van de Walle, M. Asta, and G. Ceder, CALPHAD 26, 539 (2002).Google Scholar
  21. 21.
    A. van de Walle and G. Ceder, J. Phase Equilib. 23, 348 (2002).Google Scholar
  22. 22.
    A. van de Walle and M. Asta, Model. Simul. Mater. Sci. 10, 521 (2002).Google Scholar
  23. 23.
    A.C. Powell and R. Arroyave, JOM 60 (5), 32 (2008).Google Scholar
  24. 24.
    A. van de Walle and D. Ellis, Phys. Rev. Lett. 98, 266101 (2007).Google Scholar
  25. 25.
    B.G. Chirranjeevi and A. van de Walle, Phys. Rev. B 86, 134117 (2012).Google Scholar
  26. 26.
    P. Dalach, D.E. Ellis, and A. van de Walle, Phys. Rev. B 85, 014108 (2012).Google Scholar
  27. 27.
    P. Dalach, D.E. Ellis, and A. van de Walle, Phys. Rev. B 82, 144117 (2010).Google Scholar
  28. 28.
    G. Ghosh, A. van de Walle, M. Asta, and G. Olson, CALPHAD 26, 491 (2002).Google Scholar
  29. 29.
    O. Adjaoud, G. Steinle-Neumann, B. Burton, and A. van de Walle, Phys. Rev. B 80, 134112 (2009).Google Scholar
  30. 30.
    C. Ravi, B.K. Panigrahi, M.C. Valsakumar, and A. van de Walle, Phys. Rev. B 85, 054202 (2012).Google Scholar
  31. 31.
    C. Ravi, A. van de Walle, B.K. Panigrahi, H.K. Sahu, and M.C. Valsakumar, Phys. Rev. B 81, 104111 (2010).Google Scholar
  32. 32.
    B.P. Burton and A. van de Walle, CALPHAD 37, 151 (2012).Google Scholar
  33. 33.
    B.P. Burton, A. van de Walle, and H.T. Stokes, J. Phys. Soc. Jpn. 81, 014004 (2012).Google Scholar
  34. 34.
    G. Pomrehn, E. Toberer, G. Snyder, and A. van de Walle, J. Am. Chem. Soc. 133, 11255 (2011).Google Scholar
  35. 35.
    G.S. Pomrehn, E.S. Toberer, G.J. Snyder, and A. van de Walle, Phys. Rev. B 83, 094106 (2011).Google Scholar
  36. 36.
    B.P. Burton, S. Demers, and A. van de Walle, J. Appl. Phys. 110, 023507 (2011).Google Scholar
  37. 37.
    B. Burton, A. van de Walle, and U. Kattner, J. Appl. Phys. 100, 113528 (2006).Google Scholar
  38. 38.
    D. Morgan, D. Balachandran, G. Ceder, and A. van de Walle, MRS Proceedings, vol. 755, ed. M. Greenblatt, M. Alario-Franco, M. Whittingham, and G. Rohrer (Cambridge, UK: Cambridge University Press, 2002), pp. DD2.8-1.Google Scholar
  39. 39.
    D. Morgan, B. Wang, G. Ceder, and A. van de Walle, Phys. Rev. B 67, 134404 (2003).Google Scholar
  40. 40.
    D. Balachandran, D. Morgan, G. Ceder, and A. van de Walle, J. Solid State Chem. 173, 462 (2003).Google Scholar
  41. 41.
    R. Benedek, M.M. Thackeray, and A. van de Walle, J. Mater. Chem. 20, 369 (2009).Google Scholar
  42. 42.
    R. Benedek and A. van de Walle, J. Electrochem. Soc. 155, A711 (2008).Google Scholar
  43. 43.
    R. Benedek, M.M. Thackeray, and A. van de Walle, Chem. Mater. 20, 5485 (2008).Google Scholar
  44. 44.
    Q. Xu and A. Van der Ven, Phys. Rev. B 76, 064207 (2007).Google Scholar
  45. 45.
    R. Arroyave, A. van de Walle, and Z.K. Liu, Acta Mater. 54, 473 (2006).Google Scholar
  46. 46.
    G. Ghosh, A. van de Walle, and M. Asta, J. Phase Equilib. Diff. 28, 9 (2007).Google Scholar
  47. 47.
    A. van de Walle, Z. Moser, and W. Gasior, Arch. Metall. Mater. 49, 535 (2004).Google Scholar
  48. 48.
    B. Burton and A. van de Walle, Phys. Chem. Miner. 30, 88 (2003).Google Scholar
  49. 49.
    B. Burton and A. van de Walle, Chem. Geol. 225, 222 (2006).Google Scholar
  50. 50.
    A. van de Walle and M. Asta, Metall. Mater. Trans. A 33A, 735 (2002).Google Scholar
  51. 51.
    C.H. Lanier, A. van de Walle, N. Erdman, E. Landree, O. Warschkow, A. Kazimirov, K.R. Poeppelmeier, J. Zegenhagen, M. Asta, and L.D. Marks, Phys. Rev. B 76, 045421 (2007).Google Scholar
  52. 52.
    R. Benedek, A. van de Walle, S. Gerstl, M. Asta, D.N. Seidman, and C. Woodward, Phys. Rev. B 71, 094201 (2005).Google Scholar
  53. 53.
    P.D. Tepesch, G.D. Garbulsky, and G. Ceder, Phys. Rev. Lett. 74, 2272 (1995).Google Scholar
  54. 54.
    G.M. Stocks, D.M.C. Nicholson, W.A. Shelton, B.L. Gyorffy, F.J. Pinski, D.D. Johnson, J.B. Staunton, P.E.A. Turchi, and M. Sluiter, NATO ASI on Statics and Dynamics of Alloy Phase Transformation, vol. 319, ed. P.E. Turchi and A. Gonis (New York: Plenum Press, 1994), p. 305.Google Scholar
  55. 55.
    D.B. Laks, L.G. Ferreira, S. Froyen, and A. Zunger, Phys. Rev. B 46, 12587 (1992).Google Scholar
  56. 56.
    C. Wolverton and A. Zunger, Phys. Rev. Lett. 75, 3162 (1995).Google Scholar
  57. 57.
    C. Varney and G.L.W. Hart, TMS Lett. 1, 35 (2004).Google Scholar
  58. 58.
    A. van de Walle, C.B. Gopal, S. Demers, Q. Hong, A. Kowalski, L. Miljacic, G. Pom-rehn, and P. Tiwary, Symmetry-adapted bases for parametrizing anisotropic properties, http://arxiv.org/abs/1301.0168, ArXiv preprint (2012).
  59. 59.
    G.D. Garbulsky (Ph.D. dissertation, Massachusetts Institute of Technology, 1996).Google Scholar
  60. 60.
    G.D. Garbulsky and G. Ceder, Phys. Rev. B 49, 6327 (1994).Google Scholar
  61. 61.
    G.J. Ackland, Alloy Modelling and Design, ed. G. Stocks and P. Turchi (Warrendale, PA: TMS, 1994), p. 149.Google Scholar
  62. 62.
    J.D. Althoff, D. Morgan, D. de Fontaine, M. Asta, S.M. Foiles, and D.D. Johnson, Phys. Rev. B 56, R5705 (1997).Google Scholar
  63. 63.
    L. Anthony, J.K. Okamoto, and B. Fultz, Phys. Rev. Lett. 70, 1128 (1993).Google Scholar
  64. 64.
    A. van de Walle, G. Ceder, and U.V. Waghmare, Phys. Rev. Lett. 80, 4911 (1998).Google Scholar
  65. 65.
    L. Anthony, L.J. Nagel, J.K. Okamoto, and B. Fultz, Phys. Rev. Lett. 73, 3034 (1994).Google Scholar
  66. 66.
    L.J. Nagel (Ph.D. dissertation, California Institute of Technology, 1996).Google Scholar
  67. 67.
    D. Morgan, A. van de Walle, G. Ceder, J.D. Althoff, and D. de Fontaine, Modell. Simul. Mater. Sci. Eng. 8, 295 (2000).Google Scholar
  68. 68.
    B. Fultz, Progr. Mater. Sci. 55, 247 (2010).Google Scholar
  69. 69.
    V. Ozoliņš and M. Asta, Phys. Rev. Lett. 86, 448 (2001).Google Scholar
  70. 70.
    C. Wolverton and V. Ozoliņš, Phys. Rev. Lett. 86, 5518 (2001).Google Scholar
  71. 71.
    X. Gonze, D.C. Allan, and M.P. Teter, Phys. Rev. Lett. 68, 3603 (1992).Google Scholar
  72. 72.
    S. de Gironcoli, Phys. Rev. B 51, 6773 (1995).Google Scholar
  73. 73.
    V.L. Moruzzi, J.F. Janak, and K. Schwarz, Phys. Rev. B 37, 790 (1988).Google Scholar
  74. 74.
    M. Asta, R. McCormack, and D. de Fontaine, Phys. Rev. B 48, 748 (1993).Google Scholar
  75. 75.
    J.M. Sanchez, J.P. Stark, and V.L. Moruzzi, Phys. Rev. B 44, 5411 (1991).Google Scholar
  76. 76.
    C. Colinet, J. Eymery, A. Pasturel, and A.T. Paxton, J. Phys. Condens. Matter 6, L47 (1994).Google Scholar
  77. 77.
    G.D. Garbulsky and G. Ceder, Phys. Rev. B 53, 8993 (1996).Google Scholar
  78. 78.
    P.D. Tepesch, A.F. Kohan, G.D. Garbulsky, and G. Ceder, J. Am. Ceram. Soc. 49, 2033 (1996).Google Scholar
  79. 79.
    V. Ozoliņš, C. Wolverton, and A. Zunger, Phys. Rev. B 58, R5897 (1998).Google Scholar
  80. 80.
    M.H. Sluiter, M. Weinert, and Y. Kawazoe, Phys. Rev. B 59, 4100 (1999).Google Scholar
  81. 81.
    A. van de Walle and G. Ceder, Phys. Rev. B 61, 5972 (2000).Google Scholar
  82. 82.
    E. Wu, G. Ceder, and A. van de Walle, Phys. Rev. B 67, 134103 (2003).Google Scholar
  83. 83.
    J.Z. Liu, G. Ghosh, A. van de Walle, and M. Asta, Phys. Rev. B 75, 104117 (2007).Google Scholar
  84. 84.
    D. de Fontaine, J. Althoff, D. Morgan, M. Asta, S. Foiles, and D.J.A. Quong, Phase Transformations and Systems Driven Far From Equilibrium, ed. E. Ma, M. Atzmon, P. Bellon, and R. Trivedi (Warrendale, PA: TMS, 1998), p. 175.Google Scholar
  85. 85.
    A.A. Quong and A.Y. Lui, Phys. Rev. B 56, 7767 (1997).Google Scholar
  86. 86.
    C.W. Li, X. Tang, J.A. Munoz, J.B. Keith, S.J. Tracy, D.L. Abernathy, and B. Fultz, Phys. Rev. Lett. 107, 195504 (2011).Google Scholar
  87. 87.
    J. Bhattacharya and A. van der Ven, Acta Mater. 56, 4226 (2008).Google Scholar
  88. 88.
    Q. Hong and A. van de Walle, J. Chem. Phys. 137, 094114 (2012).Google Scholar
  89. 89.
    B. Monserrat, N.D. Drummond, and R.J. Needs, Phys. Rev. B 87, 144302 (2013).Google Scholar
  90. 90.
    V. Ozolins, Phys. Rev. Lett. 102, 065702 (2009).Google Scholar
  91. 91.
    C. Wolverton, V. Ozolins, and M. Asta, Phys. Rev. B 69, 144109 (2004).Google Scholar
  92. 92.
    N.D. Mermin, Phys. Rev. 137, A1441 (1965).MathSciNetGoogle Scholar
  93. 93.
    C. Wolverton and A. Zunger, Phys. Rev. B 52, 8813 (1995).Google Scholar
  94. 94.
    F. Kormann, A. Dick, B. Grabowski, B. Hallstedt, T. Hickel, and J. Neugebauer, Phys. Rev. B 78, 033102 (2008).Google Scholar
  95. 95.
    I. Leonov, A.I. Poteryaev, V.I. Anisimov, and D. Vollhardt, Phys. Rev. Lett. 106, 106405 (2011).Google Scholar
  96. 96.
    I. Ohnuma, H. Enoki, O. Ikeda, R. Kainuma, H. Ohtani, B. Sundman, and K. Ishida, Acta Mater. 50, 379 (2002).Google Scholar
  97. 97.
    F. Zhou, T. Maxisch, and G. Ceder, Phys. Rev. Lett. 97, 155704 (2006).Google Scholar
  98. 98.
    G. Onida, L. Reining, and A. Rubio, Rev. Mod. Phys. 74, 601 (2002).Google Scholar
  99. 99.
    M. Stone and J. Roy, Stat. Soc. B Met. 36, 111 (1974).MATHGoogle Scholar
  100. 100.
    K.C. Li, Ann. Stat. 15, 956 (1987).Google Scholar
  101. 101.
    G.D. Garbulksy and G. Ceder, Phys. Rev. B 51, 67 (1995).Google Scholar
  102. 102.
    A. van de Walle, Nat. Mater. 4, 362 (2005).Google Scholar
  103. 103.
    G.W. Hart, V. Blum, M.J. Walorski, and A. Zunger, Nat. Mater. 4, 391 (2005).Google Scholar
  104. 104.
    N.A. Zarkevich and D.D. Johnson, Phys. Rev. Lett. 92, 255702 (2004).Google Scholar
  105. 105.
    T.L. Tan and D.D. Johnson, ArXiv e-prints p. 1209.6176 (2012).Google Scholar
  106. 106.
    E.T. Jaynes, Probability Theory: The Logic of Science (Vol. I) (Cambridge: Cambridge University Press, 2003).Google Scholar
  107. 107.
    E. Cockayne and A. van de Walle, Phys. Rev. B 81, 012104 (2010).Google Scholar
  108. 108.
    A.P.J. Jansen and C. Popa, Phys. Rev. B 78, 085404 (2008).Google Scholar
  109. 109.
    T. Mueller and G. Ceder, Phys. Rev. B 80, 024103 (2009).Google Scholar
  110. 110.
    A.N. Tikhonov, Dokl. Akad. Nauk SSSR 39, 195 (1943).MathSciNetGoogle Scholar
  111. 111.
    R. Drautz and A. Díaz-Ortiz, Phys. Rev. B 73, 224207 (2006).Google Scholar
  112. 112.
    A. Diaz-Ortiz, H. Dosch, and R. Drautz, J. Phys. Condens. Matter 19, 406206 (2007).Google Scholar
  113. 113.
    A. Zunger, L.G. Wang, G.L.W. Hart, and M. Sanati, Model. Simul. Mater. Sci. Eng. 10, 685 (2004).Google Scholar
  114. 114.
    L.J. Nelson, G.L.W. Hart, F. Zhou, and V. Ozolins, Phys. Rev. B 87, 035125 (2013).Google Scholar
  115. 115.
    A. Seko, Y. Koyama, and I. Tanaka, Phys. Rev. B 80, 165122 (2009).Google Scholar
  116. 116.
    T. Mueller and G. Ceder, Phys. Rev. B 82, 184107 (2010).Google Scholar
  117. 117.
    L.G. Ferreira, S.H. Wei, and A. Zunger, Int. J. Supercomput. Appl. 5, 34 (1991).Google Scholar
  118. 118.
    G.L.W. Hart and R.W. Forcade, Phys. Rev. B 77, 224115 (2008).Google Scholar
  119. 119.
    K. Binder and D.W. Heermann, Monte Carlo Simulation in Statistical Physics (New York: Springer, 1988).MATHGoogle Scholar
  120. 120.
    D. Frenkel and B. Smit, Understanding Molecular Simulation: From Algorithms to Applications (San Diego: Academic Press, 2002).Google Scholar
  121. 121.
    A.F. Kohan, P.D. Tepesch, G. Ceder, and C. Wolverton, Comput. Mater. Sci. 9, 389 (1998).Google Scholar
  122. 122.
    L. Kaufman and H. Bernstein, Computer Calculation of Phase Diagrams (New York: Academic Press, 1970).Google Scholar
  123. 123.
    G. Ghosh, A. van de Walle, and M. Asta, Acta Mater. 56, 3202 (2008).Google Scholar
  124. 124.
    A. Zunger, S.H. Wei, L. Ferreira, and J.E. Bernard, Phys. Rev. Lett. 65, 353 (1990).Google Scholar
  125. 125.
    K.C. Hass, L.C. Davis, and A. Zunger, Phys. Rev. B 42, 3757 (1990).Google Scholar
  126. 126.
    A. van de Walle, P. Tiwary, M.M. de Jong, D.L. Olmsted, M.D. Asta, A. Dick, D. Shin, Y. Wang, L.Q. Chen, and Z.K. Liu, CALPHAD 42, 13 (2013).Google Scholar
  127. 127.
    D. Shin, A. van de Walle, Y. Wang, and Z.K. Liu, Phys. Rev. B 76, 144204 (2007).Google Scholar
  128. 128.
    I.A. Abrikosov, S.I. Simak, B. Johansson, A.V. Ruban, and H.L. Skriver, Phys. Rev. B 56, 9319 (1997).Google Scholar
  129. 129.
    J. von Pezold, A. Dick, M. Friiák, and J. Neugebauer, Phys. Rev. B 81, 094203 (2010).Google Scholar
  130. 130.
    D. Shin, R. Arroyave, Z.K. Liu, and A. van de Walle, Phys. Rev. B 74, 024204 (2006).Google Scholar
  131. 131.
    A. van de Walle, Nat. Mater. 7, 455 (2008).Google Scholar
  132. 132.
    J.Z. Liu, A. van de Walle, G. Ghosh, and M. Asta, Phys. Rev. B 72, 144109 (2005).Google Scholar
  133. 133.
    F. Tasniádi, M. Odién, and I.A. Abrikosov, Phys. Rev. B 85, 144112 (2012).Google Scholar
  134. 134.
    P. Tiwary and A. van de Walle, Phys. Rev. B 87, 094304 (2013).Google Scholar
  135. 135.
    P. Tiwary and A. van de Walle, Phys. Rev. B 84, 100301(R) (2011).Google Scholar
  136. 136.
    A.F. Voter, F. Montalenti, and T.C. Germann, Ann. Rev. Mater. Res. 32, 321 (2002).Google Scholar
  137. 137.
    D. Perez, B.P. Uberuaga, Y. Shim, J.G. Amar, and A.F. Voter, Annu. Rep. Comput. Chem. 5, 79 (2009).Google Scholar
  138. 138.
    D. Alfè, G.D. Price, and M.J. Gillan, J. Phys. Chem. Solids 65, 1573 (2004).Google Scholar
  139. 139.
    L.G. Wang, A. van de Walle, and D. Alfè, Phys. Rev. B 84, 092102 (2011).Google Scholar
  140. 140.
    B. Widom, J. Chem. Phys. 39, 2808 (1963).Google Scholar
  141. 141.
    Q. Hong, and A. van de Walle, J. Chem. Phys. 139, 094114 (2013).Google Scholar
  142. 142.
    S. Demers and A. van de Walle, Phys. Rev. B 85, 195208 (2012).Google Scholar
  143. 143.
    G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996).Google Scholar
  144. 144.
    G. Kresse and J. Furthmuller, Comput. Mater. Sci. 6, 15 (1996).Google Scholar
  145. 145.
    X. Gonze, J.M. Beuken, R. Caracas, F. Detraux, M. Fuchs, G.M. Rignanese, L. Sindic, M. Verstraete, G. Zerah, F. Jollet, M. Torrent, A. Roy, M. Mikami, P. Ghosez, J.Y. Raty, and D. Allan, Comput. Mater. Sci. 25, 478 (2002).Google Scholar
  146. 146.
    X. Gonze, G.M. Rignanese, M. Verstraete, J.M. Beuken, Y. Pouillon, R. Caracas, F. Jol-let, M. Torrent, G. Zerah, M. Mikami, P. Ghosez, M. Veithen, J.Y. Raty, V. Olevano, F. Bruneval, L. Reining, R. Godby, G. Onida, D. Hamann, and D. Allan, Zeit. Kristallogr. 220, 558 (2005).Google Scholar
  147. 147.
    J.D. Gale and A.L. Rohl, Mol. Simul. 29, 291 (2003).MATHGoogle Scholar
  148. 148.
    J.D. Gale, J. Chem. Soc. Faraday Trans. 93, 629 (1997).Google Scholar
  149. 149.
    P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, and J. Luitz, WIEN2 k, http://www.wien2k.at/.
  150. 150.
    M. Chakraborty, J. Spitaler, P. Puschnig, and C. Ambrosch-Draxl, Comput. Phys. Commun. 181, 913 (2010).MATHGoogle Scholar
  151. 151.
    P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A.D. Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, and R.M. Wentzcovitch, J. Phys. Condens. Mater. 21, 395502 (2009).Google Scholar
  152. 152.
    J.M. Soler, E. Artacho, J.D. Gale, A. Garcia, J. Junquera, P. Ordejon, and D. Sanchez-Portal, J. Phys. Condens. Mater. 14, 2745 (2002).Google Scholar
  153. 153.
    M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, and M.C. Payne, J. Phys. Condens. Mater. 14, 2717 (2002).Google Scholar
  154. 154.
    I. Ohnuma, Y. Fujita, H. Mitsui, K. Ishikawa, R. Kainuma, and K. Ishida, Acta Mater. 48, 3113 (2000).Google Scholar
  155. 155.
    V.V. Samokhva, P.A. Poleshchuk, and A.A. Vecher, Russ. J. Phys. Chem. 45, 1174 (1971).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2013

Authors and Affiliations

  1. 1.School of EngineeringBrown UniversityProvidenceUSA

Personalised recommendations