Advertisement

JOM

, Volume 65, Issue 12, pp 1805–1814 | Cite as

Microstructure and Tensile Behavior of Al8Co17Cr17Cu8Fe17Ni33 (at.%) High-Entropy Alloy

  • H. M. Daoud
  • A. Manzoni
  • R. Völkl
  • N. Wanderka
  • U. Glatzel
Article

Abstract

Microstructure evolution and tensile behavior of the high-entropy alloy Al8Co17Cr17Cu8Fe17Ni33 (at.%) are investigated at room temperature and at 500°C in the as-cast state and under different heat-treatment conditions. Detailed microstructural characterizations are carried out using optical microscopy, scanning electron microscopy, and transmission electron microscopy. The equilibrium phase evolution as a function of temperature was calculated using the Thermo-Calc software (Thermo-Calc Software, Stockholm, Sweden) integrated with TTNi-7 database. The observed majority phase is a face-centered cubic solid solution for all tested specimens. Tensile ductility at room temperature and at elevated temperature is enhanced by heat treatment at 1150°C. An embrittlement phenomenon has been observed after a heat treatment at 700°C resulting in significant degradation in tensile properties.

Keywords

Intergranular Fracture Tensile Behavior Discontinuous Precipitate Void Coalescence Specimen Heat 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors are grateful to the German Research Foundation (DFG) for the financial support by grants GL 181/25-2 and WA 1378/15-2. The authors would like to thank Dr. H. Roy (NDT & Metallurgy Group, CSIR-Central Mechanical Engineering Research Institute, Durgapur 713209, India) for his helpful discussions and Dr. M. Bensch (European Aeronautic Defence and Space Company N.V, Augsburg, Germany) for his help in the Thermo-Calc, and Dipl.-Ing. L. Fuhrmann (Metals and Alloys, Bayreuth University, Germany) for his help in performing the XRD measurements.

References

  1. 1.
    J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Adv. Eng. Mater. 6, 299 (2004).CrossRefGoogle Scholar
  2. 2.
    J.W. Yeh, Y.L. Chen, S.J. Lin, and S.K. Chen, Mater. Sci. Forum 560, 1 (2007).CrossRefGoogle Scholar
  3. 3.
    C.J. Tong, Y.L. Chen, S.K. Chen, J.W. Yeh, T.T. Shun, C.H. Tsau, S.J. Lin, and S.Y. Chang, Metall. Mater. Trans. A 36, 881 (2005).CrossRefGoogle Scholar
  4. 4.
    C.J. Tong, M.R. Chen, S.K. Chen, J.W. Yeh, T.T. Shun, S.J. Lin, and S.Y. Chang, Metall. Mater. Trans. A 36A, 1263 (2005).CrossRefGoogle Scholar
  5. 5.
    C.C. Tung, J.W. Yeh, T.T. Shun, S.K. Chen, Y.S. Huang, and H.C. Chen, Mater. Lett. 6, 1 (2007).CrossRefGoogle Scholar
  6. 6.
    S. Singh, N. Wanderka, B.S. Murty, U. Glatzel, and J. Banhart, Acta Mater. 59, 182 (2011).CrossRefGoogle Scholar
  7. 7.
    J.M. Wu, S.J. Lin, J.W. Yeh, S.K. Chen, Y.S. Huang, and H.C. Chen, Wear 261, 513 (2006).CrossRefGoogle Scholar
  8. 8.
    L.H. Wen, H.C. Kou, J.S. Li, H. Chang, X.Y. Xue, and L. Zhou, Intermetallics 17, 266 (2009).CrossRefGoogle Scholar
  9. 9.
    K.B. Zhang, Z.Y. Fu, J.Y. Zhang, J. Shi, W.M. Wang, H. Wang, Y.C. Wang, and Q.J. Zhang, J. Alloys Compd. 502, 295 (2010).CrossRefGoogle Scholar
  10. 10.
    Y.J. Hsu, W.C. Chiang, and J.K. Wu, Mater. Chem. Phys. 92, 112 (2005).CrossRefGoogle Scholar
  11. 11.
    T.T. Shun, C.H. Hung, and C.F. Lee, J. Alloys Compd. 493, 105 (2010).CrossRefGoogle Scholar
  12. 12.
    H.F. Sheng, M. Gong, and L.M. Peng, Mater. Sci. Eng. A 567, 14 (2013).CrossRefGoogle Scholar
  13. 13.
    C.W. Tsai, Y.L. Chen, M.H. Tsai, J.W. Yeh, T.T. Shun, and S.K. Chen, J. Alloys Compd. 486, 427 (2009).CrossRefGoogle Scholar
  14. 14.
    M.H. Tsai, H. Yuan, G. Cheng, W. Xu, K.Y. Tsai, C.W. Tsai, W.W. Jian, C.C. Juan, W.J. Shen, M.H. Chuang, J.W. Yeh, and Y.T. Zhu, Intermetallics 32, 329 (2013).CrossRefGoogle Scholar
  15. 15.
    S. Guo, C. Ng, and C.T. Liu, J. Alloys Compd. 557, 77 (2013).CrossRefGoogle Scholar
  16. 16.
    O.N. Senkov, G.B. Wilks, J.M. Scott, and D.B. Miracle, Intermetallics 19, 698 (2011).CrossRefGoogle Scholar
  17. 17.
    K.B. Zhang, Z.Y. Zhang, W.M. Wang, H. Wang, Y.C. Wang, Q.J. Zhang, and J. Shi, Mater. Sci. Eng. A 508, 214 (2009).CrossRefGoogle Scholar
  18. 18.
    F.J. Wang, Y. Zhang, and G.L. Chen, J. Alloys Compd. 478, 321 (2009).CrossRefGoogle Scholar
  19. 19.
    O.N. Senkov, J.M. Scott, S.V. Senkova, D.B. Miracle, and C.F. Woodward, J. Alloys Compd. 509, 6043 (2011).CrossRefGoogle Scholar
  20. 20.
    F. Wang, Y. Zhang, and G. Chen, Inter Int. J. Mod. Phys. B 23, 1254 (2009).MathSciNetCrossRefGoogle Scholar
  21. 21.
    A.V. Kuznetsov, D.G. Shaysultnov, N.D. Stepanov, G.A. Salishchev, and O.N. Senkov, Mater. Sci. Eng. A 533, 107 (2012).CrossRefGoogle Scholar
  22. 22.
    T.T. Shun and Y.C. Du, J. Alloys Compd. 479, 157 (2009).CrossRefGoogle Scholar
  23. 23.
    DIN Deutsches Institut für Normung e.v. (Hrsg.), DIN-Taschenbuch 205, Materialprüfnormen für metallische Werkstoffe 3- Mechanische-technologische Prüfverfahren (erzeugnisformabhängig), Schweißverbindungen, Metallklebungen, 3rd ed. (Berlin, Germany: Beuth Verlag, 1996), pp. 44–51.Google Scholar
  24. 24.
    The Version TCCR, ThermoCalc Software AB, Stockholm, Sweden, 2006, http://www.thermocalc.com.
  25. 25.
    Thermotech Ni-Based Superalloys Database, TTNI7, Version 7.0 (Stockholm, Sweden: Thermo-Calc Software AB, 2006).Google Scholar
  26. 26.
    Federal Institute for Materials Research and Testing, Powdercell for windows, version 2.4, 2000, http://www.ccp14.ac.uk/ccp/web-mirrors/powdcell/a_v/v_1/powder/e_cell.html.
  27. 27.
    A. Manzoni, H. Daoud, S. Mondal, S. van Smaalen, R. Völkl, U. Glatzel, and N. Wanderka, J. Alloys Compd. 552, 430 (2013).CrossRefGoogle Scholar
  28. 28.
    A.L. Bowman, G.P. Arnold, E.K. Storms, and N.G. Nereson, Acta Cryst. B28, 3102 (1972).CrossRefGoogle Scholar
  29. 29.
    D. Blavette, P. Caron, and T. Khan, Superalloys, ed. D.N. Duhl, G. Maurer, S. Antolovich, C. Lund, and S. Reichman (Warrendale, PA: TMS, 1988), pp. 305–314.Google Scholar
  30. 30.
    F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd ed. (Oxford: Elsevier Ltd., 2004), p. 628.Google Scholar
  31. 31.
    W.F. Smith and J. Hashemi, Foundations of Materials Science and Engineering, 5th ed. (New York: Mc Graw-Hill Book Co, 2011), pp. 244–268.Google Scholar
  32. 32.
    G.E. Dieter, Mechanical Metallurgy, ed. S.I. Metric (Singapore: Mc Graw-Hill Book Co., 1988), pp. 132–135, 233–236, 254–265.Google Scholar
  33. 33.
    J. Roesler, Mechanical Behavior of Engineering Materials, Metals, Ceramics, Polymers and Composites (Berlin, Germany: Springer, 2007), pp. 114–116, 173–178, 185–195.Google Scholar
  34. 34.
    A. Sengupta, S.K. Putatunda, L. Bartosiewicz, J. Hangas, P.J. Nailos, M. Peputapeck, and F.E. Alberts, J. Mater. Eng. Perform. 3, 664 (1994).CrossRefGoogle Scholar
  35. 35.
    S. Ifergane, Z. Barkay, O. Beeri, and N. Eliaz, J. Mater. Sci. 45, 6345 (2010).CrossRefGoogle Scholar
  36. 36.
    J.E. Flinn, D.P. Field, G.E. Korth, T.M. Lillo, and J. Macheret, Acta Mater. 49, 2065 (2001).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2013

Authors and Affiliations

  • H. M. Daoud
    • 1
  • A. Manzoni
    • 2
  • R. Völkl
    • 1
  • N. Wanderka
    • 2
  • U. Glatzel
    • 1
  1. 1.Metals and AlloysUniversity BayreuthBayreuthGermany
  2. 2.Helmholtz-Zentrum Berlin für Materialien und Energie Berlin GmbHBerlinGermany

Personalised recommendations