, Volume 65, Issue 11, pp 1501–1509 | Cite as

Materials Design and Discovery with High-Throughput Density Functional Theory: The Open Quantum Materials Database (OQMD)

  • James E. Saal
  • Scott Kirklin
  • Muratahan Aykol
  • Bryce Meredig
  • C. WolvertonEmail author


High-throughput density functional theory (HT DFT) is fast becoming a powerful tool for accelerating materials design and discovery by the amassing tens and even hundreds of thousands of DFT calculations in large databases. Complex materials problems can be approached much more efficiently and broadly through the sheer quantity of structures and chemistries available in such databases. Our HT DFT database, the Open Quantum Materials Database (OQMD), contains over 200,000 DFT calculated crystal structures and will be freely available for public use at In this review, we describe the OQMD and its use in five materials problems, spanning a wide range of applications and materials types: (I) Li-air battery combination catalyst/electrodes, (II) Li-ion battery anodes, (III) Li-ion battery cathode coatings reactive with HF, (IV) Mg-alloy long-period stacking ordered (LPSO) strengthening precipitates, and (V) training a machine learning model to predict new stable ternary compounds.


Density Functional Theory Formation Energy LiFePO4 Density Functional Theory Calculation Ternary Compound 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We would like to acknowledge funding support from the following sources: the Center for Electrical Energy Storage: Tailored Interfaces, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences (to S. K.); The Dow Chemical Company (to M. A.); the Ford-Boeing-Northwestern Alliance for the LPSO study and U.S. Department of Energy, Office of Basic Energy Sciences through grant DE-FG02-98ER45721 for work on the OQMD (to J. E. S.); and the Department of Defense through the National Defense Science & Engineering Graduate Fellowship Program with further support by DOE under Grant No. DE-FG02-07ER46433 (to B. M. and C. W.). Calculations were performed on the Northwestern University high-performance computing system Quest, as well as on resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.


  1. 1.
    National Science and Technology Council, Materials Genome Initiative for Global Competitiveness, Tech. Rep. (June 2011).Google Scholar
  2. 2.
    P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).MathSciNetCrossRefGoogle Scholar
  3. 3.
    W. Kohn and L.J. Sham, Phys. Rev. 140, A1133 (1965).MathSciNetCrossRefGoogle Scholar
  4. 4.
    J. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).CrossRefGoogle Scholar
  5. 5.
    J. Ihm, A. Zunger, and M.L. Cohen, J. Phys. C Solid State 12, 4409 (1979).CrossRefGoogle Scholar
  6. 6.
    D. Ceperley and B. Alder, Phys. Rev. Lett. 45, 566 (1980).CrossRefGoogle Scholar
  7. 7.
    J. Ihm, M. Yin, and M.L. Cohen, Solid State Commun. 37, 491 (1981).CrossRefGoogle Scholar
  8. 8.
    J. Hafner, C. Wolverton, and G. Ceder, MRS Bull. 31, 659 (2006).CrossRefGoogle Scholar
  9. 9.
    S. Curtarolo, G.L.W. Hart, M.B. Nardelli, N. Mingo, S. Sanvito, and O. Levy, Nat. Mater. 12, 191 (2013).CrossRefGoogle Scholar
  10. 10.
    J. Saal, S. Kirklin, B. Meredig, A. Thompson, J. Doak, and C. Wolverton, unpublished research (2013).Google Scholar
  11. 11.
    A. Jain, G. Hautier, C.J. Moore, S. Ping Ong, C.C. Fischer, T. Mueller, K.A. Persson, and G. Ceder, Comput. Mater. Sci. 50, 2295 (2011).CrossRefGoogle Scholar
  12. 12.
    D.D. Landis, J.S. Hummelshoj, S. Nestorov, J. Greeley, M. Dulak, T. Bli-gaard, J.K. Norskov, and K.W. Jacobsen, Comput. Sci. Eng. 14, 51 (2012).CrossRefGoogle Scholar
  13. 13.
    S. Curtarolo, W. Setyawan, S. Wang, J. Xue, K. Yang, R.H. Taylor, L.J. Nelson, G.L. Hart, S. Sanvito, M. Buongiorno-Nardelli, N. Mingo, and O. Levy, Comput. Mater. Sci. 58, 227 (2012).CrossRefGoogle Scholar
  14. 14.
    G. Bergerhoff, R. Hundt, R. Sievers, and I.D. Brown, J. Chem. Inf. Model. 23, 66 (1983).CrossRefGoogle Scholar
  15. 15.
    A. Belsky, M. Hellenbrandt, V.L. Karen, and P. Luksch, Acta Crystallogr. B 58, 364 (2002).CrossRefGoogle Scholar
  16. 16.
    G. Jóhannesson, T. Bligaard, A. Ruban, H. Skriver, K. Jacobsen, and J. Norskov, Phys. Rev. Lett. 88, 1 (2002).CrossRefGoogle Scholar
  17. 17.
    T. Bligaard, G.H. Johannesson, A.V. Ruban, H.L. Skriver, K.W. Jacobsen, and J.K. Nørskov, Appl. Phys. Lett. 83, 4527 (2003).CrossRefGoogle Scholar
  18. 18.
    M. Andersson, T. Bligaard, A. Kustov, K. Larsen, J. Greeley, T. Johannessen, C. Christensen, and J. Nørskov, J. Catal. 239, 501 (2006).CrossRefGoogle Scholar
  19. 19.
    J. Greeley, T.F. Jaramillo, J. Bonde, I.B. Chorkendorff, and J.K. Norskov, Nat. Mater. 5, 909 (2006).CrossRefGoogle Scholar
  20. 20.
    A. Jain, S.-A. Seyed-Reihani, C.C. Fischer, D.J. Couling, G. Ceder, and W.H. Green, Chem. Eng. Sci. 65, 3025 (2010).CrossRefGoogle Scholar
  21. 21.
    G. Hautier, A. Jain, S.P. Ong, B. Kang, C. Moore, R. Doe, and G. Ceder, Chem. Mater. 23, 3495 (2011).CrossRefGoogle Scholar
  22. 22.
    S. Wang, Z. Wang, W. Setyawan, N. Mingo, and S. Curtarolo, Phys. Rev. X 1, 021012 (2011).CrossRefGoogle Scholar
  23. 23.
    K. Yang, W. Setyawan, S. Wang, M. Buongiorno Nardelli, and S. Curtarolo, Nat. Mater. 11, 614 (2012).CrossRefGoogle Scholar
  24. 24.
    L. Yu and A. Zunger, Phys. Rev. Lett. 108, 068701 (2012).CrossRefGoogle Scholar
  25. 25.
    X. Zhang, L. Yu, A. Zakutayev, and A. Zunger, Adv. Funct. Mater. 22, 1425 (2012).CrossRefGoogle Scholar
  26. 26.
    S. Kirklin and C. Wolverton, unpublished research (2013).Google Scholar
  27. 27.
    S. Kirklin, B. Meredig, and C. Wolverton, Adv. Energy Mater. 3, 252 (2013).CrossRefGoogle Scholar
  28. 28.
    M. Aykol, S. Kirklin, and C. Wolverton, unpublished research (2013).Google Scholar
  29. 29.
    J. Saal and C. Wolverton, unpublished research (2013).Google Scholar
  30. 30.
    B. Meredig, A. Agrawal, S. Kirklin, J.E. Saal, J.W. Doak, A. Thompson, K. Zhang, A. Choudhary, and C. Wolverton, unpublished research (2013).Google Scholar
  31. 31.
    G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996).CrossRefGoogle Scholar
  32. 32.
    G. Kresse and J. Furthmuller, Comput. Mater. Sci. 6, 15 (1996).CrossRefGoogle Scholar
  33. 33.
    J. Saal and C. Wolverton, Acta Mater. 61, 2330 (2013).CrossRefGoogle Scholar
  34. 34.
    Y. Zhang, E. Majzoub, V. Ozoliņš, and C. Wolverton, J. Phys. Chem. C 116, 10522 (2012).CrossRefGoogle Scholar
  35. 35.
    Y. Zhang, E. Majzoub, V. Ozoliņš, and C. Wolverton, Phys. Rev. B 82, 174107 (2010).CrossRefGoogle Scholar
  36. 36.
    J.W. Doak and C. Wolverton, Phys. Rev. B 86, 144202 (2012).CrossRefGoogle Scholar
  37. 37.
    A. Akbarzadeh, V. Ozolins, and C. Wolverton, Adv. Mater. 19, 3233 (2007).CrossRefGoogle Scholar
  38. 38.
    C. Wolverton and V. Ozolins, Phys. Rev. B 75, 1 (2007).CrossRefGoogle Scholar
  39. 39.
    S. Kirklin and C. Wolverton, unpublished research.Google Scholar
  40. 40.
    SGTE, Thermodynamic Properties of Inorganic Materials, vol. 19 (Berlin, Germany: Springer-Verlag, 1999).Google Scholar
  41. 41.
    Y. Meng and M.A.D. Dompablo, Energy Environ. Sci. 2, 589 (2009).CrossRefGoogle Scholar
  42. 42.
    G. Ceder, MRS Bull. 35, 693 (2010).CrossRefGoogle Scholar
  43. 43.
    M.D. Fleischauer, J.M. Topple, and J.R. Dahn, Electrochem. Solid State 8, A137 (2005).CrossRefGoogle Scholar
  44. 44.
    H. Lee, Y. Kim, M. Hong, and S. Lee, J. Power Sources 141, 159 (2005).CrossRefGoogle Scholar
  45. 45.
    C.-M. Hwang and J.-W. Park, Surf. Coat. Technol. 205, S439 (2010).CrossRefGoogle Scholar
  46. 46.
    Z. Wang, W. Tian, X. Liu, Y. Li, and X. Li, Mater. Chem. Phys. 100, 92 (2006).CrossRefGoogle Scholar
  47. 47.
    A.D.W. Todd, R.E. Mar, and J.R. Dahn, J. Electrochem. Soc. 154, A597 (2007).CrossRefGoogle Scholar
  48. 48.
    M. Xue and Z. Fu, Solid State Ionics 177, 1501 (2006).CrossRefGoogle Scholar
  49. 49.
    P. Ferguson and M. Martine, J. Power Sources 194, 794 (2009).CrossRefGoogle Scholar
  50. 50.
    X. Wang and W. Han, ACS Appl. Mater. Int. 2, 1548 (2010).CrossRefGoogle Scholar
  51. 51.
    J. Xiang, X. Wang, X. Xia, J. Zhong, and J. Tu, J. Alloy. Compd. 509, 157 (2011).CrossRefGoogle Scholar
  52. 52.
    D. Souza, V. Pralong, A. Jacobson, and L. Nazar, Science 296, 2012 (2002).CrossRefGoogle Scholar
  53. 53.
    V. Pralong, Electrochem. Commun. 4, 516 (2002).CrossRefGoogle Scholar
  54. 54.
    J.L. Tirado, J.C. Jumas, L. Monconduit, and J. Olivier-Fourcade, J. Power Sources 109, 308 (2002).CrossRefGoogle Scholar
  55. 55.
    S. Boyanov, F. Gillot, and L. Monconduit, Ionics 14, 125 (2008).CrossRefGoogle Scholar
  56. 56.
    L.Y. Beaulieu, K.W. Eberman, R.L. Turner, L.J. Krause, and J.R. Dahn, Electrochem. Solid State 4, A137 (2001).CrossRefGoogle Scholar
  57. 57.
    J. Wolfenstine, J.L. Allen, J. Read, and D. Foster, Tech. Rep. June (2006).Google Scholar
  58. 58.
    C.S. Johnson, S.-H. Kang, J.T. Vaughey, S.V. Pol, M. Balasubramanian, and M.M. Thackeray, Chem. Mater. 22, 1263 (2010).CrossRefGoogle Scholar
  59. 59.
    L. Trahey, C. Johnson, and J. Vaughey, Electrochem. Solid State 14, A64 (2011).CrossRefGoogle Scholar
  60. 60.
    C. Wolverton, D.J. Siegel, A.R. Akbarzadeh, V. Ozoliņš, J. Phys.-Condens. Mater. 20, 064228 (2008).Google Scholar
  61. 61.
    E. Littauer, W. Momyer, and K. Tsai, J. Power Sources 2, 163 (1977).CrossRefGoogle Scholar
  62. 62.
    M. Urquidi-Macdonald, J. Flores, D. Macdonald, O. Pensado-Rodriguez, and D. Vanvoorhis, Electrochim. Acta 43, 3069 (1998).CrossRefGoogle Scholar
  63. 63.
    K. Takechi, T. Shiga, and T. Asaoka, Chem. Commun. 47, 3463 (2011).CrossRefGoogle Scholar
  64. 64.
    Z. Chen, Y. Qin, K. Amine, and Y.-K. Sun, J. Mater. Chem. 20, 7606 (2010).CrossRefGoogle Scholar
  65. 65.
    K. Edstrom, T. Gustafsson, and J. Thomas, Electrochim. Acta 50, 397 (2004).CrossRefGoogle Scholar
  66. 66.
    Y.J. Kim, J. Cho, T.-J. Kim, and B. Park, J. Electrochem. Soc. 150, A1723 (2003).CrossRefGoogle Scholar
  67. 67.
    J. Cho, Y.J. Kim, and B. Park, Chem. Mater. 4, 3788 (2000).CrossRefGoogle Scholar
  68. 68.
    D. Aurbach, B. Markovsky, A. Rodkin, and E. Levi, Electrochim. Acta 47, 4291 (2002).CrossRefGoogle Scholar
  69. 69.
    N.V. Landschoot, E. Kelder, P. Kooyman, C. Kwakernaak, and J. Schoonman, J. Power Sources 138, 262 (2004).CrossRefGoogle Scholar
  70. 70.
    J. Cabana, L. Monconduit, D. Larcher, and M.R. Palacín, Adv. Mater. 22, E170 (2010).CrossRefGoogle Scholar
  71. 71.
    F. Wang, J. Am. Chem. Soc. 133, 18828 (2011).CrossRefGoogle Scholar
  72. 72.
    J. Cho, T.-G. Kim, C. Kim, J.-G. Lee, Y.-W. Kim, and B. Park, J. Power Sources 146, 58 (2005).CrossRefGoogle Scholar
  73. 73.
    H. Zhao, L. Gao, W. Qiu, and X. Zhang, J. Power Sources 132, 195 (2004).CrossRefGoogle Scholar
  74. 74.
    C. Li, H. Zhang, L. Fu, H. Liu, Y. Wu, E. Rahm, R. Holze, and H. Wu, Electrochim. Acta 51, 3872 (2006).CrossRefGoogle Scholar
  75. 75.
    J.-F. Nie, Metall. Mater. Trans. A 43, 3891 (2012).CrossRefGoogle Scholar
  76. 76.
    Y. Kawamura, K. Hayashi, A. Inoue, and T. Masumoto, Metall. Mater. Trans. 42, 1172 (2001).Google Scholar
  77. 77.
    K. Amiya, T. Ohsuna, and A. Inoue, Mater. Trans. 44, 2151 (2003).CrossRefGoogle Scholar
  78. 78.
    M. Yamasaki, T. Anan, S. Yoshimoto, and Y. Kawamura, Scripta Mater. 53, 799 (2005).CrossRefGoogle Scholar
  79. 79.
    Y. Kawamura, T. Kasahara, S. Izumi, and M. Yamasaki, Scripta Mater. 55, 453 (2006).CrossRefGoogle Scholar
  80. 80.
    K. Yamada, Y. Okubo, M. Shiono, and H. Watanabe, Mater. Trans. 47, 1066 (2006).CrossRefGoogle Scholar
  81. 81.
    Y. Kawamur and M. Yamasaki, Metall. Mater. Trans. 48, 2986 (2007).Google Scholar
  82. 82.
    T. Itoi, K. Takahashi, H. Moriyama, and M. Hirohashi, Scripta Mater. 59, 1155 (2008).CrossRefGoogle Scholar
  83. 83.
    J. Nie, K. Ohishi, X. Gao, and K. Hono, Acta Mater. 56, 6061 (2008).CrossRefGoogle Scholar
  84. 84.
    H. Yokobayashi, K. Kishida, H. Inui, M. Yamasaki, and Y. Kawamura, Acta Mater. 59, 7287 (2011).CrossRefGoogle Scholar
  85. 85.
    S.-B. Mi and Q–.Q. Jin, Scripta Mater. 68, 635 (2013).CrossRefGoogle Scholar
  86. 86.
    Q.-Q. Jin, C.-F. Fang, and S.-B. Mi, J. Alloy Compd. 7 (2013).Google Scholar
  87. 87.
    Z. Leng, J. Zhang, T. Yin, L. Zhang, S. Liu, M. Zhang, and R. Wu, Mater. Sci. Eng.: A 580, 196 (2013).Google Scholar
  88. 88.
    Y. Zhu, A. Morton, and J. Nie, Acta Mater. 58, 2936 (2010).CrossRefGoogle Scholar
  89. 89.
    D. Egusa and E. Abe, Acta Mater. 60, 166 (2012).CrossRefGoogle Scholar
  90. 90.
    T. Itoi, T. Seimiya, Y. Kawamura, and M. Hirohashi, Scripta Mater. 51, 107 (2004).CrossRefGoogle Scholar
  91. 91.
    D. Egusa and E. Abe (Paper presented at LPSO Conference, Sapporo, Japan, 2 October 2012).Google Scholar
  92. 92.
    H. Somekawa and T. Mukai, Mater. Sci. Eng.: A 459, 366 (2007).Google Scholar
  93. 93.
    Y.-N. Zhang, D. Kevorkov, J. Li, E. Essadiqi, and M. Medraj, Intermetallics 18, 2404 (2010).CrossRefGoogle Scholar
  94. 94.
    K. Oh-ishi, R. Watanabe, C. Mendis, and K. Hono, Mater. Sci. Eng.: A 526, 177 (2009).Google Scholar
  95. 95.
    T. Zhou, M. Yang, Z. Zhou, J. Hu, and Z. Chen, J. Alloy. Compd. 560, 161 (2013).CrossRefGoogle Scholar
  96. 96.
    G. Trimarchi and A. Zunger, Phys. Rev. B 75, 104113 (2007).CrossRefGoogle Scholar
  97. 97.
    C.C. Fischer, K.J. Tibbetts, D. Morgan, and G. Ceder, Nat. Mater. 5, 641 (2006).CrossRefGoogle Scholar
  98. 98.
    C.W. Glass, A.R. Oganov, and N. Hansen, Comput. Phys. Commun. 175, 713 (2006).CrossRefzbMATHGoogle Scholar
  99. 99.
    Y.M. Muggianu, M. Gambino, and J.P. Bros, J. Chim. Phys. 72, 83 (1975).Google Scholar
  100. 100.
    M. Hillert, Phase Equilibria, Phase Diagrams and Phase Transformations (Cambridge, U.K.: Cambridge University Press, 1998).Google Scholar
  101. 101.
    J.J. Rodríguez, L.I. Kuncheva, and C.J. Alonso, IEEE Trans. Pattern Anal. Mach. Intell. 28, 1619 (2006).CrossRefGoogle Scholar
  102. 102.
    G. Hautier, C.C. Fischer, A. Jain, T. Mueller, and G. Ceder, Chem. Mater. 22, 3762 (2010).CrossRefGoogle Scholar
  103. 103.
    S. Curtarolo, D. Morgan, K. Persson, J. Rodgers, and G. Ceder, Phys. Rev. Lett. 91, 135503 (2003).CrossRefGoogle Scholar
  104. 104.
    M. Shishkin and G. Kresse, Phys. Rev. B 75, 235102 (2007).CrossRefGoogle Scholar
  105. 105.
    J. Harl and G. Kresse, Phys. Rev. Lett. 103, 056401 (2009).CrossRefGoogle Scholar
  106. 106.
    W. Foulkes, L. Mitas, R. Needs, and G. Rajagopal, Rev. Mod. Phys. 73, 33 (2001).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2013

Authors and Affiliations

  • James E. Saal
    • 1
  • Scott Kirklin
    • 1
  • Muratahan Aykol
    • 1
  • Bryce Meredig
    • 1
  • C. Wolverton
    • 1
    Email author
  1. 1.Department of Materials Science and EngineeringNorthwestern UniversityEvanstonUSA

Personalised recommendations