, Volume 65, Issue 9, pp 1122–1130 | Cite as

Direct Modeling of Structures and Segregations Up to Industrial Casting Scales

  • Ch.-A. GandinEmail author
  • T. Carozzani
  • H. Digonnet
  • S. Chen
  • G. Guillemot

Direct modeling of structures and segregations during industrial casting processes is made difficult due to the need for coupling intricate phenomena occurring at multiple length and time scales. Its outputs are, however, required for modeling of further thermomechanical treatments as well as for prediction of in-service properties. The present article presents recent efforts made to integrate microscopic scale concepts taken from physical metallurgy into a macroscopic model. This new model includes macroscopic solution of average conservation equations, mesoscopic scale description of the development of the grain structure, together with microscopic scale consideration for the kinetics of the solid-liquid interfaces and the chemical segregation taking place between phases. Simulations are presented for directional solidification of a cylindrical ingot, a benchmark experiment for macrosegregation in a rectangular cavity, and a surface treatment that mimics the gas tungsten arc welding process. The difficulties of transforming the model into a tool applied for industrial castings are discussed.


Cellular Automaton Mushy Zone Finite Element Mesh Finite Element Solution Liquidus Isotherm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material

11837_2013_679_MOESM1_ESM.avi (4.7 mb)
Supplementary material 1: Figure 1 video (AVI 4,840 kb)

Supplementary material 2: Figure 3 video (AVI 28,564 kb)

Supplementary material 3: Figure 5 video (AVI 99,111 kb)


  1. 1.
    M. Rappaz and Ch.-A Gandin, Acta Metall. Mater. 41, 345 (1993).CrossRefGoogle Scholar
  2. 2.
    Ch.-A Gandin and M. Rappaz, Acta Metall. Mater. 42, 2233 (1994).CrossRefGoogle Scholar
  3. 3.
    M. Rappaz, Ch.-A Gandin, J.-L. Desbiolles, and Ph. Thévoz, Metall. Trans. A 27, 695 (1996).CrossRefGoogle Scholar
  4. 4.
    Ch.-A Gandin and M. Rappaz, Acta Mater. 45, 2187 (1997).CrossRefGoogle Scholar
  5. 5.
    Ch.-A Gandin, M. Rappaz, D. West, and B.L. Adams, Metall. Trans. 26A, 1543 (1995).Google Scholar
  6. 6.
    Ch.-A Gandin, J.-L. Desbiolles, M. Rappaz, and Ph. Thévoz, Metall. Mater. Trans. A 30, 3153 (1999).CrossRefGoogle Scholar
  7. 7.
    P. Carter, D.C. Cox, Ch.-A Gandin, and R.C. Reed, Mater. Sci. Eng. A-Struct. 280, 233 (2000).CrossRefGoogle Scholar
  8. 8.
    H. Takatani, Ch.-A Gandin, and M. Rappaz, Acta Mater. 48, 675 (2000).CrossRefGoogle Scholar
  9. 9.
    G. Guillemot, Ch.-A Gandin, H. Combeau, and R. Heringer, Modell. Simul. Mater. Sci. Eng. 12, 545 (2004).CrossRefGoogle Scholar
  10. 10.
    Ch.-A. Gandin, Acta Mater. 48, 2483 (2000).CrossRefGoogle Scholar
  11. 11.
    G. Guillemot, Ch.-A. Gandin, and H. Combeau, ISIJ Int. 46, 880 (2006).CrossRefGoogle Scholar
  12. 12.
    G. Guillemot, Ch.-A. Gandin, and M. Bellet, J. Cryst. Growth 303, 58 (2007).CrossRefGoogle Scholar
  13. 13.
    H. Yin and J.N. Koster, J. Cryst. Growth 205, 590 (1999).CrossRefGoogle Scholar
  14. 14.
    H. Yin and J.N. Koster, J. Alloy. Compd. 352, 197 (2003).CrossRefGoogle Scholar
  15. 15.
    T. Carozzani (Ph.D. thesis, MINES ParisTech, Paris, France, 2012).Google Scholar
  16. 16.
    T. Carozzani, H. Digonnet, and Ch.-A. Gandin, Modell. Simul. Mater. Sci. Eng. 20, 015010 (2012).CrossRefGoogle Scholar
  17. 17.
    T. Carozzani, Ch.-A. Gandin, H. Digonnet, M. Bellet, K. Zaidat, and F. Fautrelle, Metall. Mater. Trans. A 44, 873 (2013).CrossRefGoogle Scholar
  18. 18.
    Y. Mesri, H. Digonnet, and T. Coupez, Eur. J. Comp. Mech. 18, 669 (2009).Google Scholar
  19. 19.
    H. Digonnet (Ph.D. thesis, Ecole Nationale Supérieure des Mines de Paris, Paris, France, 2001).Google Scholar
  20. 20.
    A. Basermann, J. Clinckemaillie, T. Coupez, J. Fingberg, H. Digonnet, R. Ducloux, J.-M. Gratien, U. Hartmann, G. Lonsdale, B. Maerten, D. Roose, and C. Walshaw, Appl. Math. Model. 25, 83 (2000).zbMATHCrossRefGoogle Scholar
  21. 21.
    M.A. Martorano, C. Beckermann, and C.A. Gandin, Metall. Mater. Trans. A 34, 1657 (2003).CrossRefGoogle Scholar
  22. 22.
    M.A. Martorano, C. Beckermann, and C.A. Gandin, Metall. Mater. Trans. A 35, 1915 (2004).CrossRefGoogle Scholar
  23. 23.
    V.B. Biscuola and M.A. Martorano, Metall. Mater. Trans. A 39, 2885 (2008).CrossRefGoogle Scholar
  24. 24.
    S. McFadden, D.J. Browne, and Gandin Ch.-A., Metall. Mater. Trans. A 40, 662 (2009).CrossRefGoogle Scholar
  25. 25.
    Ch.-A. Gandin, ISIJ Int. 40, 971 (2000).Google Scholar
  26. 26.
    L. Hachani, B. Saadi, X.D. Wang, A. Nouri, K. Zaidat, A. Belgacem Bouzida, L. Ayouni-Derouiche, G. Raimondi, and Y. Fautrelle, Int. J. Heat Mass. Transfer 55, 1986 (2012).CrossRefGoogle Scholar
  27. 27.
    Ch–A Gandin, M. Eshelman, and R. Trivedi, Metall. Mater. Trans. A 27, 2727 (1996).CrossRefGoogle Scholar
  28. 28.
    D. Tourret and A. Karma, IOP Conf. Ser.: Mater. Sci. Eng. 33, 012095 (2012).Google Scholar
  29. 29.
    Ch.-A. Gandin, S. Mosbah, Th. Volkmann, and D.M. Herlach, Acta Mater. 56, 3023 (2008).Google Scholar
  30. 30.
    S. Mosbah, M. Bellet, and Ch–A. Gandin, Metall. Mater. Trans. A 41, 651 (2010).CrossRefGoogle Scholar
  31. 31.
    Ch.-A. Gandin, Compte. Rendus Phys. 11, 216 (2010).CrossRefGoogle Scholar
  32. 32.
    D. Tourret, Ch.-A. Gandin, Th. Volkmann, and D.M. Herlach, Acta Mater. 59, 4665 (2011).Google Scholar
  33. 33.
    D. Tourret, G. Reinhart, Ch–A Gandin, G.N. Iles, U. Dahlborg, M. Calvo-Dahlborg, and C.M. Bao, Acta Mater. 59, 6658 (2011).CrossRefGoogle Scholar
  34. 34.
    Ch–A Gandin, Y. Bréchet, M. Rappaz, G. Canova, M. Ashby, and H. Shercliff, Acta Mater. 50, 901 (2002).CrossRefGoogle Scholar
  35. 35.
    Ch.-A. Gandin and A. Jacot, Acta Mater. 55, 2539 (2007).Google Scholar

Copyright information

© TMS 2013

Authors and Affiliations

  • Ch.-A. Gandin
    • 1
    Email author
  • T. Carozzani
    • 1
  • H. Digonnet
    • 1
  • S. Chen
    • 1
  • G. Guillemot
    • 1
  1. 1.MINES ParisTech, CEMEF, UMR CNRS 7635Sophia AntipolisFrance

Personalised recommendations