, Volume 65, Issue 6, pp 709–719 | Cite as

Layer-by-Layer Enabled Nanomaterials for Chemical Sensing and Energy Conversion



The layer-by-layer (LbL) technique is a wet chemical method for the assembly of ultrathin films, with thicknesses up to 100 nm. This method is based on the successive transfer of molecular layers to a solid substrate that is dipped into cationic and anionic solutions in an alternating fashion. The adsorption is mainly driven by electrostatic interactions so that many molecular and nanomaterial systems can be engineered under this method. Moreover, it is inexpensive, can be easily performed, and does not demand sophisticated equipment or clean rooms. The most explored use of the LbL technique is to build up molecular devices for chemical sensing and energy conversion. Both applications require ultrathin films where specific elements must be organized with high control of thickness and spatial distribution, preferably in the nanolength and mesolength scales. In chemical sensors, the LbL technique is employed to assemble specific sensoactive materials such as conjugated polymers, enzymes, and immunological elements onto appropriated electrodes. Molecular recognition events are thus transduced by the assembled sensoactive layer. In energy-conversion devices, the LbL technique can be employed to fabricate different device’s parts including electrodes, active layers, and auxiliary layers. In both applications, the devices’ performance can be fully modulated and improved by simply varying film thickness and molecular architecture. The present review article highlights the main features of the LbL technique and provides a brief description of different (bio)chemical sensors, solar cells, and organic light-emitting diodes enabled by the LbL approach.



The financial support from the Brazilian agencies CNPq, FAP-DF, FINEP, CAPES, and FINATEC are gratefully acknowledged.


  1. 1.
    C.M. Petty and R.M. Bryce, David Bloor: An Introduction to Molecular Electronics (New York, NY: Oxford University Press, 1995).Google Scholar
  2. 2.
    Ossila Fabrication System for OLEDs, Organic Photovoltaics and a Variety of Other Research Devices,
  3. 3.
    K. Patel, Materials Matters, Organic and Molecular Electronics, vol. 4 ( St. Louis, MO: Sigma-Aldrich Chemical Co., 2009).Google Scholar
  4. 4.
    DyeSol Product Catalogue 2011,
  5. 5.
  6. 6.
    A. Ulman, An Introduction to Ultrathin Films: From Langmuir-Blodgett to Self-Assembly (Boston, MA: Academic Press, 1991).Google Scholar
  7. 7.
    K. Blodgett, J. Am. Chem. Soc. 57, 1007 (1935).CrossRefGoogle Scholar
  8. 8.
    P. Dynarowicz-Latka, A. Dhanabalan, and O.N. Oliveira, Adv. Coll. Interf. Sci. 91, 221 (2001).CrossRefGoogle Scholar
  9. 9.
    A. Ulman, Chem. Rev. 96, 1533 (1996).CrossRefGoogle Scholar
  10. 10.
    V.P.N. Geraldo, F.J. Pavinatto, T.M. Nobre, L. Caseli, and O.N. Oliveira, Chem. Phys. Lett. 559, 99 (2013).CrossRefGoogle Scholar
  11. 11.
    J. Cancino, T.M. Nobre, O.N. Oliveira, S.A.S. Machado, and V. Zucolotto, Nanotoxicology 7, 61 (2013).CrossRefGoogle Scholar
  12. 12.
    G. Decher, Science 277, 1232 (1997).CrossRefGoogle Scholar
  13. 13.
    R.K. Iller, J. Coll. Interf. Sci. 21, 569 (1966).CrossRefGoogle Scholar
  14. 14.
    G. Decher, J.D. Hong, and J. Schmitt, Thin Solid Films 210, 831 (1992).CrossRefGoogle Scholar
  15. 15.
    P.T. Hammond, Adv. Mater. 16, 1271 (2004).CrossRefGoogle Scholar
  16. 16.
    L.G. Paterno, O.N. Oliveira, and L.H.C. Mattoso, Quím. Nova 24, 228 (2001).CrossRefGoogle Scholar
  17. 17.
    J.B. Schelenoff, H. Ly, and M. Li, J. Am. Chem. Soc. 120, 7626 (1998).CrossRefGoogle Scholar
  18. 18.
    M.A.G. Soler, L.G. Paterno, and P.C. Morais, J. Nanofluids 1, 101 (2012).CrossRefGoogle Scholar
  19. 19.
    L.G. Paterno and L.H.C. Mattoso, Polymer 42, 5239 (2001).CrossRefGoogle Scholar
  20. 20.
    G.B. Alcantara, L.G. Paterno, A.S. Afonso, R.C. Faria, M.A. Pereira-da-Silva, P.C. Morais, and M.A.G. Soler, Phys. Chem. Chem. Phys. 13, 21233 (2011).CrossRefGoogle Scholar
  21. 21.
    G.S. Braga, L.G. Paterno, J.P.H. Lima, F.J. Fonseca, and A.M. de Andrade, Mater. Sci. Eng. C 28, 555 (2008).CrossRefGoogle Scholar
  22. 22.
    A. Hulanicki, S. Geab, and F. Ingman, Pure Appl. Chem. 63, 1247 (1991).CrossRefGoogle Scholar
  23. 23.
    M.E. Khamseh, M. Ansari, M. Malek, G. Shafiee, and H. Baradaran, J. Diabetes Sci. Technol. 5, 388 (2011).Google Scholar
  24. 24.
    N. Barsan, D. Koziej, and U. Weimar, Sens. Actuators, B 121, 18 (2007).CrossRefGoogle Scholar
  25. 25.
    E.S. Medeiros, L.G. Paterno, and L.H.C. Mattoso, Encyclopedia of Sensors, vol. 9, ed. C.A. Grimes, E.C. Dickey, and M.V. Pishko (Stevenson Ranch, CA: American Scientific Publishers, 2006), pp. 75–110.Google Scholar
  26. 26.
    A.G. MacDiarmid, Synth. Met. 125, 11 (2001).CrossRefGoogle Scholar
  27. 27.
    A.G. MacDiarmid, Synth. Met. 84, 27 (1997).CrossRefGoogle Scholar
  28. 28.
    D.R. Thévenot, K. Toth, R.A. Durst, and G.S. Wilson, Pure Appl. Chem. 71, 2333 (1999).CrossRefGoogle Scholar
  29. 29.
    M. Riskin, B. Basnar, Y. Huang, and I. Willner, Adv. Mater. 19, 2691 (2007).CrossRefGoogle Scholar
  30. 30.
    K.J. Albert, N.S. Lewis, C.L. Schauer, G.A. Sotzing, S.E. Stitzel, T.P. Vaid, and D.R. Walt, Chem. Rev. 100, 2595 (2000).CrossRefGoogle Scholar
  31. 31.
    Y. Vlasov, A. Legin, A. Rudnitskaya, C. Di Natale, and A. D’Amico, Pure Appl. Chem. 77, 1965 (2005).CrossRefGoogle Scholar
  32. 32.
    M.E. Saltveit, Physiol. Plant. 89, 204 (1993).CrossRefGoogle Scholar
  33. 33.
    L.G. Paterno and L.H.C. Mattoso, J. Appl. Polym. Sci. 83, 1309 (2002).CrossRefGoogle Scholar
  34. 34.
    A. Riul, D.S. dos Santos, K. Wohnrath, R. Di Tommazo, A.C.P.L.F. Carvalho, F.J. Fonseca, O.N. Oliveira, D.M. Taylor, and L.H.C. Mattoso, Langmuir 18, 239 (2002).Google Scholar
  35. 35.
    D.S. dos Santos, A. Riul, R.R. Malmegrim, F.J. Fonseca, O.N. Oliveira, and L.H.C. Mattoso, Macromol. Biosci. 3, 591 (2003).CrossRefGoogle Scholar
  36. 36.
    P.H.B. Aoki, D. Volpati, A. Riul, W. Caetano, and C.J.L. Constantino, Langmuir 25, 2331 (2009).CrossRefGoogle Scholar
  37. 37.
    A. Riul, H.C. de Sousa, R.R. Malmegrim, D.S. dos Santos, A.C.P.L.F. Carvalho, F.J. Fonseca, O.N. Oliveira, and L.H.C. Mattoso, Sens. Actuators B 98, 77 (2004).Google Scholar
  38. 38.
    D.S. Dyminski, L.G. Paterno, H.H. Takeda, H.M.A. Bolini, L.H.C. Mattoso, and L.M.B. Cândido, Sensor Lett. 4, 403 (2006).CrossRefGoogle Scholar
  39. 39.
    G.S. Braga, L.G. Paterno, and F.J. Fonseca, Sens. Actuators, B 171, 181 (2012).CrossRefGoogle Scholar
  40. 40.
    A.L. Garçom Jr., F.J. Fonseca, and L.G. Paterno, Sensor Lett. 10, 866 (2012).CrossRefGoogle Scholar
  41. 41.
    G.B. Alcântara, L.G. Paterno, F.J. Fonseca, P.C. Morais, and M.A.G. Soler, J. Magn. Magn. Mater. 323, 1372 (2011).CrossRefGoogle Scholar
  42. 42.
    L.G. Paterno, M.A.G. Soler, F.J. Fonseca, J.P. Sinnecker, E.H.C.P. Sinnecker, E.C.D. Lima, S.N. Báo, M.A. Novak, and P.C. Morais, J. Nanosci. Nanotech. 10, 2679 (2010).CrossRefGoogle Scholar
  43. 43.
    L.G. Paterno, F.J. Fonseca, G.B. Alcantara, M.A.G. Soler, P.C. Morais, J.P. Sinnecker, M.A. Novak, E.C.D. Lima, F.L. Leite, and L.H.C. Mattoso, Thin Solid Films 517, 1753 (2009).CrossRefGoogle Scholar
  44. 44.
    L.G. Paterno, M.A.G. Soler, F.J. Fonseca, J.P. Sinnecker, E.H.C.P. Sinnecker, E.C.D. Lima, M.A. Novak, and P.C. Morais, J. Phys. Chem. C 113, 5087 (2009).CrossRefGoogle Scholar
  45. 45.
    M.A.G. Soler, L.G. Paterno, J.P. Sinnecker, J.G. Wen, E.H.C.P. Sinnecker, R.F. Neumann, M. Bahiana, M.A. Novak, and P.C. Morais, J. Nanopart. Res. 14, 653 (2012).CrossRefGoogle Scholar
  46. 46.
    L.G. Paterno, E.H.C.P. Sinnecker, M.A.G. Soler, J.P. Sinnecker, M.A. Novak, and P.C. Morais, J. Nanosci. Nanotechnol. 12, 6672 (2012).CrossRefGoogle Scholar
  47. 47.
    G.B. Alcantara, L.G. Paterno, F.J. Fonseca, M.A. Pereira-da-Silva, P.C. Morais, and M.A.G. Soler, J. Nanofluids. 3, (2013).Google Scholar
  48. 48.
    R.M. Iost and F.N. Crespilho, Biosens. Bioelectron. 31, 1 (2012).CrossRefGoogle Scholar
  49. 49.
    K. Ariga, T. Nakanishi, and T. Michinobu, J. Nanosci. Nanotechnol. 6, 2278 (2006).CrossRefGoogle Scholar
  50. 50.
    T. Hoshi, J.-I. Anzai, and T. Osa, Anal. Chem. 67, 770 (1995).CrossRefGoogle Scholar
  51. 51.
    J. Hodak, R. Etchenique, E.J. Calvo, K. Singhal, and P.N. Bartlett, Langmuir 13, 2708 (1997).CrossRefGoogle Scholar
  52. 52.
    M. Gerard, A. Chaubey, and B.D. Malhotra, Biosens. Bioelectron. 17, 345 (2002).CrossRefGoogle Scholar
  53. 53.
    A. Merkoci, Electroanalysis 25, 5 (2013).CrossRefGoogle Scholar
  54. 54.
    J. Wang, Electroanalysis 17, 7 (2005).CrossRefGoogle Scholar
  55. 55.
    V. Zucolotto, A.P.A. Pinto, T. Tumolo, M.L. Moraes, M.S. Baptista, A. Riul, A.P.U. Araujo, and O.N. Oliveira, Biosens. Bioelectron. 21, 1320 (2006).CrossRefGoogle Scholar
  56. 56.
    V. Zucolotto, K.R.P. Daghastanli, C.O. Hayasaka, A. Riul, P. Ciancaglini, and O.N. Oliveira, Anal. Chem. 79, 2163 (2007).CrossRefGoogle Scholar
  57. 57.
    A.C. Perinoto, R.M. Maki, M.C. Colhone, F.R. Santos, V. Migliaccio, K.R. Daghastanli, R.G. Stabeli, P. Ciancaglini, F.V. Paulovich, M.C.F. de Oliveira, O.N. Oliveira, and V. Zucolotto, Anal. Chem. 82, 9763 (2010).CrossRefGoogle Scholar
  58. 58.
    V. Zucolotto, M. Ferreira, M.R. Cordeiro, C.J.L. Constantino, W.C. Moreira, and O.N. Oliveira, Sens. Actuators, B 113, 809 (2006).CrossRefGoogle Scholar
  59. 59.
    M.K. Ram, O. Yavuz, V. Lahsangah, and M. Aldissi, Sens. Actuators, B 106, 750 (2005).CrossRefGoogle Scholar
  60. 60.
    L. Bi, H. Wang, Y. Shen, E. Wang, and S. Dong, Electrochem. Commun. 5, 913 (2003).CrossRefGoogle Scholar
  61. 61.
    S. Tian, A. Baba, J. Liu, Z. Wang, W. Knoll, M.-K. Park, and R. Advincula, Adv. Funct. Mater. 13, 73 (2003).CrossRefGoogle Scholar
  62. 62.
    L. Qian, Q. Gao, Y. Song, Z. Li, and X. Yang, Sens. Actuators, B 107, 303 (2005).CrossRefGoogle Scholar
  63. 63.
    A. Yu, Z. Liang, J. Cho, and F. Caruso, Nano Lett. 3, 1203 (2003).CrossRefGoogle Scholar
  64. 64.
    P. He and M. Bayachou, Langmuir 21, 6086 (2005).CrossRefGoogle Scholar
  65. 65.
    N.S. Lewis and D.G. Nocera, Proc. Natl. Acad. Sci. USA 103, 15729 (2006).CrossRefGoogle Scholar
  66. 66.
    P.V. Kamat, J. Phys. Chem. C 111, 2834 (2007).CrossRefGoogle Scholar
  67. 67.
    S.J. Fonash, Solar Cell Device Physics, 2nd ed. (Burlington, MA: Academic Press, 2010).Google Scholar
  68. 68.
    H. Hoppe and N.S. Sariciftci, J. Mater. Res. 19, 1924 (2004).CrossRefGoogle Scholar
  69. 69.
    F.C. Krebbs, J. Fyenbo, and M. Jørgensen, J. Mater. Chem. 20, 8994 (2010).CrossRefGoogle Scholar
  70. 70.
    H. Mattoussi, M.F. Rubner, F. Zhou, J. Kumar, S.K. Tripathy, and L.Y. Chiang, Appl. Phys. Lett. 77, 1540 (2000).CrossRefGoogle Scholar
  71. 71.
    D.M. Guldi, C. Luo, D. Koktysh, N.A. Kotov, T. Da Ros, S. Bosi, and M. Prato, Nano Lett. 2, 775 (2002).CrossRefGoogle Scholar
  72. 72.
    M. Gratzel, Acc. Chem. Res. 42, 1788 (2009).CrossRefGoogle Scholar
  73. 73.
    A. Yella, H.-W. Lee, H.N. Tsao, C. Yi, A.K. Chandiran, Md.K. Nazeeruddin, E.W.-G. Diau, C.-Y. Yeh, S.M Zakeeruddin, and M. Grätzel, Science 334, 629 (2011).Google Scholar
  74. 74.
    J.A. He, R. Mosurkal, L.A. Samuelson, L. Li, and J. Kumar, Langmuir 19, 2169 (2003).CrossRefGoogle Scholar
  75. 75.
    S. Takenaka, Y. Maehara, H. Imai, M. Yoshikawa, and S. Shiratori, Thin Solid Films 438, 346 (2003).CrossRefGoogle Scholar
  76. 76.
    G.M. Lowman and P.T. Hammond, Small 1, 1070 (2005).CrossRefGoogle Scholar
  77. 77.
    H. Tokuhisa and P.T. Hammond, Adv. Funct. Mater. 13, 831 (2003).CrossRefGoogle Scholar
  78. 78.
    A.O.T. Patrocinio, L.G. Paterno, and N.Y.M. Iha, J. Photochem. Photobiol. A: Chem. 205, 23 (2009).CrossRefGoogle Scholar
  79. 79.
    A.O.T. Patrocinio, L.G. Paterno, and N.Y.M. Iha, J. Phys. Chem. C 114, 17954 (2010).CrossRefGoogle Scholar
  80. 80.
    A.O.T. Patrocinio, A.S. El-Bacha, E.B. Paniago, R.M. Paniago, and N.Y.M. Iha, Int. J. Photoenergy 2012, ID: 638571.Google Scholar
  81. 81.
    T. Tsujimura, OLED Display Fundamentals and Applications (New York: Wiley, 2012).CrossRefGoogle Scholar
  82. 82.
    S.A. Van Slyke, C.H. Chen, and C.W. Tang, Appl. Phys. Lett. 69, 2160 (1996).CrossRefGoogle Scholar
  83. 83.
    M. Onoda and K. Yoshino, J. Appl. Phys. 78, 4456 (1995).CrossRefGoogle Scholar
  84. 84.
    A.C. Fou, O. Onitsuka, M. Ferreira, M.F. Rubner, and B.R. Hsieh, J. Appl. Phys. 79, 7501 (1996).CrossRefGoogle Scholar
  85. 85.
    O. Onitsuka, A.C. Fou, M. Ferreira, B.R. Hsieh, and M.F. Rubner, J. Appl. Phys. 80, 4067 (1996).CrossRefGoogle Scholar
  86. 86.
    J.C.B. Santos, L.G. Paterno, E.A.T. Dirani, F.J. Fonseca, and A.M. de Andrade, Thin Solid Films 516, 3184 (2008).CrossRefGoogle Scholar
  87. 87.
    G. Santos, L.G. Paterno, F.J. Fonseca, A.M. de Andrade, and L. Pereira, ECS Trans. 39, 307 (2011).CrossRefGoogle Scholar
  88. 88.
    A. Wu, D. Yoo, J.-K. Lee, and M.F. Rubner, J. Am. Chem. Soc. 121, 4883 (1999).CrossRefGoogle Scholar
  89. 89.
    J.-K. Lee, D.S. Yoo, E.S. Handy, and M.F. Rubner, Appl. Phys. Lett. 69, 1686 (1996).CrossRefGoogle Scholar

Copyright information

© TMS 2013

Authors and Affiliations

  1. 1.Instituto de QuímicaUniversidade de BrasíliaBrasíliaBrazil
  2. 2.Instituto de FísicaUniversidade de BrasíliaBrasíliaBrazil

Personalised recommendations