, Volume 65, Issue 4, pp 481–488 | Cite as

Materials Science Challenges in Radiocarbon Dating: The Case of Archaeological Plasters

  • Elisabetta Boaretto
  • Kristin M. PoduskaEmail author


Structural, compositional, and isotopic characterization techniques are critically important to help identify pristine materials that are suitable for accurate and precise radiocarbon dating. Lime plasters, cements, and mortars are ideal materials for establishing firm and secure dates in the archaeological record as human-constructed living surfaces and installations. However, the often complex composite structures of plasters and their susceptibility to diagenetic processes have impeded the development of a reliable and reproducible method to identify the best specimens for dating. In this article we present an overview of the plaster production process and the radiocarbon dating method. We explain how material characterization techniques and radiocarbon dating can be integrated to make progress toward the ultimate goal of relating radiocarbon concentrations with environmental, sample preparation, and/or diagenetic conditions in which the plaster existed. A key aspect of this strategy relies on implementing material characterization techniques in the field, during an excavation, to help establish the archaeological context in which datable material is recovered.


Calcite Diagenesis Calcium Carbonate Radiocarbon Date Archaeological Record 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Funding from Natural Science and Engineering Resource Council (NSERC) Canada (KMP). We also acknowledge the Kimmel Center for Archaeological Science at the Weizmann Institute of Science for providing an exciting meeting point for science and archaeology.


  1. 1.
    S. Bowman, Radiocarbon Dating. (Berkeley: University of California Press, 1990).Google Scholar
  2. 2.
    E. Boaretto, Isr. J. Earth Sci. 56, 207 (2007).CrossRefGoogle Scholar
  3. 3.
    E. Boaretto, Radiocarbon 51, 275 (2009).Google Scholar
  4. 4.
    P. Vandiver, Annu. Rev. Mater. Res. 31, 373 (2001).CrossRefGoogle Scholar
  5. 5.
    P. Reimer et al., Radiocarbon 51, 1111 (2009).Google Scholar
  6. 6.
    J. Heinemeier, H. Jungner, A. Lindroos, Å. Ringbom, T. von Konow, and N. Rud, Nucl. Instr. Methods Phys. Res. B 123, 487 (1997).CrossRefGoogle Scholar
  7. 7.
    J. Hale, J. Heinemeier, L. Lancaster, A. Lindroos, and Å. Ringbom, Am. Scientist 91, 130 (2003).CrossRefGoogle Scholar
  8. 8.
    M. Van Strydonck, K. Van Der Borg, A.F.M. De Jong, and E. Keppens, Radiocarbon 34, 873 (1992).Google Scholar
  9. 9.
    A. Frumkin, A. Shimron, and J. Rosenbaum, Nature 425, 169(2003).CrossRefGoogle Scholar
  10. 10.
    L.V. Rutgers, K. van der Borg, and A.F.M. de Jong, I. Poole. Nature 436, 339 (2005).CrossRefGoogle Scholar
  11. 11.
    A.W.G. Pike, D.L. Hoffmann, M. García-Diez, P.B. Pettitt, J. Alcolea, R.D. Balbín, C. González-Sainz, C. de las Heras, J.A. Lasheras, R. Montes, and J. Zilhão, Science 336, 1409 (2012).CrossRefGoogle Scholar
  12. 12.
    E. Borelli, ARC Laboratory Handbook. (Rome: International Centre for the Study of the Preservation and Restoration of Cultural Property, 1999).Google Scholar
  13. 13.
    H.J.P. Brocken, N.M. van der Pers, and J.A. Larbi, Mater. Struct. 33, 634 (2000).CrossRefGoogle Scholar
  14. 14.
    F. Yang, B. Zhang, and Q. Ma, Acct. Chem. Res. 43, 936 (2010).CrossRefGoogle Scholar
  15. 15.
    W.D. Kingery, P. Vandiver, and M. Prickett, J. Field Archaeol. 15, 219 (1988).CrossRefGoogle Scholar
  16. 16.
    F. Valla, H. Khalaily, H. Valladas, E. Kaltnecker, F. Bocquentin, T. Cabellos, and D.E. Bar-Yosef Mayer, J. Isr. Prehist. Soc. 37, 135 (2007).Google Scholar
  17. 17.
    I. Kuijt, and N. Goring-Morris, J. World Prehist. 16, 361(2002).CrossRefGoogle Scholar
  18. 18.
    A. Lindroos, L. Regev, M. Oinonen, Å. Ringbom, and J. Heinemeier, Radiocarbon 54, 915 (2012).Google Scholar
  19. 19.
    S. Felder-Casagrande, H.G. Wiedemann, and A. Reller, J. Thermal Anal. 49, 971 (1997).CrossRefGoogle Scholar
  20. 20.
    C. Weiss, and I. Gerlach, Archaeol. Anthropol. Sci. 1, 87(2009).CrossRefGoogle Scholar
  21. 21.
    I. Milevski, H. Khalaily, N. Getzov, and I. Hershkovitz, Paléorient 34, 37 (2008).Google Scholar
  22. 22.
    K.M. Poduska, L. Regev, F. Berna, E. Mintz, I. Milevski, H. Khalaily, S. Weiner, and E. Boaretto, Radiocarbon 54, 887 (2012).Google Scholar
  23. 23.
    L. Regev, K.M. Poduska, L. Addadi, S. Weiner, and E. Boaretto, J. Archaeol. Sci. 37, 3022 (2010).CrossRefGoogle Scholar
  24. 24.
    F. Berna, A. Behar, R. Shahack-Gross, J. Berg, E. Boaretto, A. Gilboa, I. Sharon, S. Shalev, S. Shilstein, N. Yahalom-Mack, J.R. Zorn, and S. Weiner. J. Archaeol. Sci. 34, 358 (2007).CrossRefGoogle Scholar
  25. 25.
    F. Berna, P. Goldberg, Isr. J. Earth Sci. 56, 107 (2008).CrossRefGoogle Scholar
  26. 26.
    S. Weiner, Microarchaeology: Beyond the Visible Archaeological Record. (Cambridge University Press, Cambridge, 2010).CrossRefGoogle Scholar
  27. 27.
    J. Labeyrie, and G. Delibrias, Nature 201, 742 (1964).CrossRefGoogle Scholar
  28. 28.
    M.S. Baxter, and A. Walton, Nature 225, 937 (1970).CrossRefGoogle Scholar
  29. 29.
    A. Lindroos, J. Heinemeier, Å. Ringbom, F. Brock, P. Sonck-Koota, M. Pehkonen, and J. Suksi, Comm. Hum. Litt. 128, 214 (2011).Google Scholar
  30. 30.
    G. Hodgins, A. Lindroos, Å. Ringbom, J. Heinemeier, and F. Brock, Comm. Hum. Litt. 128, 209 (2011).Google Scholar
  31. 31.
    M. Van Strydonck, M. Dupas, and M. Dauchot-Dehons. Radiocarbon 28, 702 (1986).Google Scholar
  32. 32.
    T. Goslar, D. Nawrocka, and J. Czernik, Radiocarbon 51, 987(2009).Google Scholar
  33. 33.
    G.L.A. Pesce, R.J. Ball, G. Quarta, and L. Calcagnile, Radiocarbon 54, 933 (2012).Google Scholar
  34. 34.
    R. Berger, Radiocarbon 34, 880 (1992).Google Scholar
  35. 35.
    A.M. Wyrwa, T. Goslar, and J. Czernik, Radiocarbon 51, 471 (2009).Google Scholar
  36. 36.
    L. Angel Ortega, M. Cruz Zuluaga, A. Alonso-Olazabal, X. Murelaga, M. Insausti, and A. Iba-ez-Etxeberria, Radiocarbon 54, 933 (2012).Google Scholar
  37. 37.
  38. 38.
    A. Lindroos, J. Heinemeier, Å. Ringbom, M. Braskén, and Á. Sveinbjörnsdótter, Radiocarbon 49, 47 (2007).Google Scholar
  39. 39.
    E. Sonninen, and H. Jungner, Radiocarbon 43, 271 (2001).Google Scholar
  40. 40.
    C. Pachiaudi, J. Marechal, M. Van Strydonck, M. Dupas, and M. Dauchot-Dehon, Radiocarbon 28, 691 (1986).Google Scholar
  41. 41.
    M. Van Strydonck, M. Dupas, and E. Keppens, Radiocarbon 31, 610 (1989).Google Scholar
  42. 42.
    M.M. Langley, S.J. MaLoney, Å. Ringbom, J. Heinemeier, and A. Lindroos, Comm. Hum. Litt. 128, 242 (2011).Google Scholar
  43. 43.
    D. Nawrocka, T. Goslar, A. Pazdur Materials, Technologies and Practice in Historic Heritage 279 Structures. (Amsterdam: Springer, 2010).Google Scholar
  44. 44.
    D. Michalska, A. Pazdur, J. Czernik, M. Szczepaniak, and M. Zurakowska, Geochronometria 40, 33 (2013).CrossRefGoogle Scholar
  45. 45.
    K.M. Poduska, L. Regev, E. Boaretto, L. Addadi, S. Weiner, L. Kronik, and S. Curtarolo, Adv. Mater. 23, 550 (2011).CrossRefGoogle Scholar
  46. 46.
    V. Chu, L. Regev, S. Weiner, and E. Boaretto, J. Archaeol. Sci. 35, 905 (2008).CrossRefGoogle Scholar
  47. 47.
    R. Gueta, A. Natan, L. Addadi, S. Weiner, K. Refson, and L. Kronik, Angew. Chem. Int. Ed. 46, 291 (2007).CrossRefGoogle Scholar
  48. 48.
    R. Shahack-Gross, R.-M. Albert, A. Gilboa, O. Nagar-Hilman, I. Sharon, and S. Weiner, J. Archaeol. Sci. 32, 1417 (2005).CrossRefGoogle Scholar
  49. 49.
    H. Watzman, Nature 468, 614 (2010).CrossRefGoogle Scholar
  50. 50.
    R. Shahack-Gross, and A. Ayalon, J. Archaeol. Sci. 40, 570(2013).CrossRefGoogle Scholar
  51. 51.
    L. Regev, E. Eckmeier, E. Mintz, S. Weiner, and E. Boaretto, Radiocarbon 53, 117 (2011).Google Scholar

Copyright information

© TMS 2013

Authors and Affiliations

  1. 1.Weizmann Institute Max Planck Center for Integrative Archaeology, D-REAMS Radiocarbon LaboratoryWeizmann Institute of ScienceRehovotIsrael
  2. 2.Department of Physics and Physical OceanographyMemorial University of NewfoundlandSt. John’sCanada

Personalised recommendations