, Volume 65, Issue 3, pp 360–373 | Cite as

The Influence of Grain Boundaries on Radiation-Induced Point Defect Production in Materials: A Review of Atomistic Studies



Radiation-induced defects cause severe degradation of materials properties during irradiation that can ultimately cause the material to fail. Consequences of these defects include swelling, embrittlement, and undesirable phase transformations. Nanocrystalline materials, which contain a high density of grain boundaries, have demonstrated enhanced radiation tolerance compared to large grain counterparts under certain conditions. This is because, as has long been recognized, grain boundaries can serve as defect sinks for absorbing and annihilating radiation-induced defects. Increasingly, researchers have examined how grain boundaries influence the direct production of defects during collision cascade, the origin of the radiation-induced defects. In this review article, we analyze the computational studies in this area that have been performed during the past two decades. These studies examine defect production near grain boundaries in metallic, ionic, and covalent systems. It is found that, in most systems, grain boundaries absorb more interstitials than vacancies during the defect production stage. While this is generically true of most boundaries, the detailed interaction between defects and grain boundaries does depend on boundary atomic structure, the stress state near the boundary, cascade-boundary separation, and materials properties. Furthermore, the defect distribution near boundaries is qualitatively different from that in single crystals, with the former often exhibiting larger vacancy clusters and smaller interstitial clusters than the latter. Finally, grain boundaries that are damaged after cascades have occurred exhibit different interaction behavior with defects than their pristine counterparts. Together, these atomistic simulation results provide useful insight for both developing higher-level modeling of defect evolution at long timescales and how interfaces influence radiation damage evolution.


  1. 1.
    C. Becquart and C. Domain, Metall. Mater. Trans. A 42, 852 (2011).CrossRefGoogle Scholar
  2. 2.
    S.J. Zinkle and K. Farrell, J. Nucl. Mater. 168, 262 (1989).CrossRefGoogle Scholar
  3. 3.
    T.D. Shen, S. Feng, M. Tang, J.A. Valdez, Y. Wang, and K.E. Sickafus, Appl. Phys. Lett. 90, 263115 (2007).CrossRefGoogle Scholar
  4. 4.
    Y. Chimi, A. Iwase, N. Ishikawa, M. Kobiyama, T. Inami, and S. Okuda, J. Nucl. Mater. 297, 355 (2001).CrossRefGoogle Scholar
  5. 5.
    A.D. Brailsford and R. Bullough, Phil. Trans. R. Soc. Lond. A 302, 87 (1981).CrossRefGoogle Scholar
  6. 6.
    B.N. Singh and A.J.E. Foreman, Phil. Mag. A 66, 975 (1992).CrossRefGoogle Scholar
  7. 7.
    K. Sugio, Y. Shimomura, and T.D. de la Rubia, J. Phys. Soc. Jpn. 67, 882 (1998).CrossRefGoogle Scholar
  8. 8.
    M. Samaras, P.M. Derlet, H. Van Swygenhoven, and M. Victoria, Phys. Rev. Lett. 88, 125505 (2002).CrossRefGoogle Scholar
  9. 9.
    M. Samaras, P.M. Derlet, H. Van Swygenhoven, and M. Victoria, Phil. Mag. 83, 3599 (2003).CrossRefGoogle Scholar
  10. 10.
    M. Samaras, P.M. Derlet, H. Van Swygenhoven, and M. Victoria, Nucl. Instrum. Methods Phys. Res. Sect. B 202, 51 (2003).CrossRefGoogle Scholar
  11. 11.
    M. Samaras, P.M. Derlet, H.V. Swygenhoven, and M. Victoria, J. Nucl. Mater. 351, 47 (2006).CrossRefGoogle Scholar
  12. 12.
    M.J. Demkowicz, O. Anderoglu, X.H. Zhang, and A. Misra, J. Mater. Res. 26, 1666 (2011).CrossRefGoogle Scholar
  13. 13.
    X.-M. Bai, A.F. Voter, R.G. Hoagland, M. Nastasi, and B.P. Uberuaga, Science 327, 1631 (2010).CrossRefGoogle Scholar
  14. 14.
    X.-M. Bai, L.J. Vernon, R.G. Hoagland, A.F. Voter, M. Nastasi, and B.P. Uberuaga, Phys. Rev. B 85, 214103 (2012).CrossRefGoogle Scholar
  15. 15.
    F.J. Pérez-Pérez and R. Smith, Nucl. Instrum. Methods Phys. Res. Sect. B 153, 136 (1999).CrossRefGoogle Scholar
  16. 16.
    F.J. Pérez-Pérez and R. Smith, Nucl. Instrum. Methods Phys. Res. Sect. B 164–165, 487 (2000).CrossRefGoogle Scholar
  17. 17.
    F.J. Pérez-Pérez and R. Smith, Nucl. Instrum. Methods Phys. Res. Sect. B 180, 322 (2001).CrossRefGoogle Scholar
  18. 18.
    R.E. Stoller, P.J. Kamenski, and Y.N. Osetsky, MRS Proc. 1125, 1125 (2008).CrossRefGoogle Scholar
  19. 19.
    L. Van Brutzel and E. Vincent-Aublant, J. Nucl. Mater. 377, 522 (2008).CrossRefGoogle Scholar
  20. 20.
    L. Van Brutzel, E. Vincent-Aublant, and J.M. Delaye, Nucl. Instrum. Methods Phys. Res. B Beam Interact. Mater. Atoms 267, 3013 (2009).CrossRefGoogle Scholar
  21. 21.
    X.-M. Bai and B.P. Uberuaga, Phil. Mag. 92, 1469 (2012).CrossRefGoogle Scholar
  22. 22.
    A. Moriani and F. Cleri, Phys. Rev. B 73, 214113 (2006).CrossRefGoogle Scholar
  23. 23.
    F. Gao, D. Chen, W. Hu, and W.J. Weber, Phys. Rev. B 81, 184101 (2010).CrossRefGoogle Scholar
  24. 24.
    N. Swaminathan, P.J. Kamenski, D. Morgan, and I. Szlufarska, Acta Mater. 58, 2843 (2010).CrossRefGoogle Scholar
  25. 25.
    N. Swaminathan, M. Wojdyr, D.D. Morgan, and I. Szlufarska, J. Appl. Phys. 111, 054918 (2012).CrossRefGoogle Scholar
  26. 26.
    E.A. Kenik and T.E. Mitchell, Philos. Mag. 32, 815 (1975).CrossRefGoogle Scholar
  27. 27.
    K. Nordlund, J. Wallenius, and L. Malerba, Nucl. Instrum. Methods Phys. Res. Sect. B 246, 322 (2006).CrossRefGoogle Scholar
  28. 28.
    R.E. Stoller and S.G. Guiriec, J. Nucl. Mater. 329–333, 1238 (2004).CrossRefGoogle Scholar
  29. 29.
    Y.N. Osetsky, A. Serra, B.N. Singh, and S.I. Golubov, Philos. Mag. A 80, 2131 (2000).CrossRefGoogle Scholar
  30. 30.
    E. Ruedl, P. Delavignette, and S. Amelinckx, Phys. Rev. Lett. 6, 530 (1961).CrossRefGoogle Scholar
  31. 31.
    M.F. Chisholm, A. Maiti, S.J. Pennycook, and S.T. Pantelides, Mater. Sci. Forum 294–296, 161 (1999).CrossRefGoogle Scholar
  32. 32.
    D. Nguyen-Manh, A.P. Horsfield, and S.L. Dudarev, Phys. Rev. B 73, 020101 (2006).CrossRefGoogle Scholar
  33. 33.
    N.D. Morelon, D. Ghaleb, J.M. Delaye, and L. Van Brutzel, Phil. Mag. 83, 1533 (2003).CrossRefGoogle Scholar
  34. 34.
    W. Jiang, H. Wang, I. Kim, Y. Zhang, and W.J. Weber, J. Mater. Res. 25, 2341 (2010).CrossRefGoogle Scholar
  35. 35.
    W. Jiang, H. Wang, I. Kim, I.T. Bae, G. Li, P. Nachimuthu, Z. Zhu, Y. Zhang, and W.J. Weber, Phys. Rev. B 80, 161301 (2009).CrossRefGoogle Scholar
  36. 36.
    F. Gao, W.J. Weber, and R. Devanathan, Nucl. Instrum. Methods Phys. Res. Sect. B 180, 176 (2001).CrossRefGoogle Scholar
  37. 37.
    X.Y. Liu, B.P. Uberuaga, M.J. Demkowicz, T.C. Germann, A. Misra, and M. Nastasi, Phys. Rev. B 85, 012103 (2012).CrossRefGoogle Scholar
  38. 38.
    K.E. Sickafus, L. Minervini, R.W. Grimes, J.A. Valdez, M. Ishimaru, F. Li, K.J. McClellan, and T. Hartmann, Science 289, 748 (2000).CrossRefGoogle Scholar
  39. 39.
    K.E. Sickafus, R.W. Grimes, J.A. Valdez, A. Cleave, M. Tang, M. Ishimaru, S.M. Corish, C.R. Stanek, and B.P. Uberuaga, Nat. Mater. 6, 217 (2007).CrossRefGoogle Scholar
  40. 40.
    B.P. Uberuaga and X.-M. Bai, J. Phys. Condens. Matter 23, 435004 (2011).CrossRefGoogle Scholar
  41. 41.
    P. Nerikar, C.R. Stanek, S.R. Phillpot, S.B. Sinnott, and B.P. Uberuaga, Phys. Rev. B 81, 064111 (2010).CrossRefGoogle Scholar
  42. 42.
    A.J. Ardell, V. Ghetta, D. Gorse, D. Mazière, and V. Pontikis, eds., Materials Issues for Generation IV Systems (Dordrecht, the Netherlands: Springer, 2008).Google Scholar
  43. 43.
    B.J. Garrison, N. Winograd, J. Don, and E. Harrison, J. Chem. Phys. 69, 1440 (1978).CrossRefGoogle Scholar
  44. 44.
    M. Ghaly and R.S. Averback, Phys. Rev. Lett. 72, 364 (1994).CrossRefGoogle Scholar
  45. 45.
    R.E. Voskoboinikov, Nucl. Instrum. Methods Phys. Res. Sect. B (submitted).Google Scholar
  46. 46.
    M.J. Demkowicz and R.G. Hoagland, Int. J. Appl. Mech. 1, 421 (2009).CrossRefGoogle Scholar
  47. 47.
    A. Misra, M. Demkowicz, X. Zhang, and R. Hoagland, JOM 59 (9), 62 (2007).CrossRefGoogle Scholar

Copyright information

© TMS 2013

Authors and Affiliations

  1. 1.Center for Advanced Modeling and SimulationIdaho National LaboratoryIdaho FallsUSA
  2. 2.Materials Science and Technology DivisionLos Alamos National LaboratoryLos AlamosUSA

Personalised recommendations