JOM

, Volume 65, Issue 3, pp 401–407

Twinning in Strained Ferroelastics: Microstructure and Statistics

Article

Abstract

The generation of functional interfaces such as superconducting and ferroelectric twin boundaries requires new ways to nucleate as many interfaces as possible in bulk materials and thin films. Materials with high densities of twin boundaries are often ferroelastics and martensites. In this review, we show that the nucleation and propagation of twin boundaries depend sensitively on temperature and system size. Sudden changes of the domain pattern manifest themselves as avalanches or “jerks” in the potential energy of the sample. At high temperatures, the change of the twin pattern is thermally activated; the probability P to find sudden energy changes of jerks E follows the Vogel–Fulcher statistics P(E) ~ exp (E/(T − TVF)), whereas the athermal regime at low temperatures corresponds to power-law statistics P(E) ~ Eε. We find that the complexity of the pattern is well characterized by the number of junctions between twin boundaries. Materials with soft bulk moduli have much higher junction densities than those with hard bulk moduli. Soft materials also show an increase in the junction density with diminishing sample size. The change of the complexity and the number density of twin boundaries represents an important step forward in the development of “domain boundary engineering,” where the functionality of the materials is directly linked to the domain pattern.

References

  1. 1.
    A. Aird and E.K.H. Salje, J. Phys.: Condens. Matter 10, L377 (1998).CrossRefGoogle Scholar
  2. 2.
    Y. Kim, M. Alexe, and E.K.H. Salje, Appl. Phys. Lett. 96, 032904 (2010).CrossRefGoogle Scholar
  3. 3.
    J. Seidel, P. Maksymovych, Y. Batra, A. Katan, S.Y. Yang, Q. He, A.P. Baddorf, S.V. Kalinin, C.-H. Yang, J.-C. Yang, Y.-H. Chu, E.K.H. Salje, H. Wormeester, M. Salmeron, and R. Ramesh, Phys. Rev. Lett. 105, 197603 (2010).CrossRefGoogle Scholar
  4. 4.
    M. Calleja, M.T. Dove, and E.K.H. Salje, J. Phys.: Condens. Matter 15, 2301 (2003).CrossRefGoogle Scholar
  5. 5.
    A. Ohtomo and H.Y. Hwang, Nature 427, 423 (2004).CrossRefGoogle Scholar
  6. 6.
    S.A. Pauli, S.J. Leake, B. Delley, M. Björck, C.W. Schneider, C.M. Schlepütz, D. Martoccia, S. Paetel, J. Mannhart, and P.R. Willmott, Phys. Rev. Lett. 106, 036101 (2011).CrossRefGoogle Scholar
  7. 7.
    M. Huijben, G. Rijnders, D.H.A. Blank, S. Bals, S. Van Aert, J. Verbeeck, G. Van Tendeloo, A. Brinkman, and H. Hilgenkamp, Nat. Mater. 5, 556 (2006).CrossRefGoogle Scholar
  8. 8.
    G. Herranz, M. Basletić, M. Bibes, C. Carrétéro, E. Tafra, E. Jacquet, K. Bouzehouane, C. Deranlot, A. Hamzić, J.-M. Broto, A. Barthélémy, and A. Fert, Phys. Rev. Lett. 98, 216803 (2007).CrossRefGoogle Scholar
  9. 9.
    B. Kalisky, J.R. Kirtley, J.G. Analytis, J.-H. Chu, I.R. Fisher, and K.A. Moler, Phys. Rev. B 83, 064511 (2011).CrossRefGoogle Scholar
  10. 10.
    Y. Ivry, D. Chu, J.F. Scott, E.K.H. Salje, and C. Durkan, Nano Lett. 11, 4619 (2011).CrossRefGoogle Scholar
  11. 11.
    T. Birol, N.A. Benedek, and C.J. Fennie, Phys. Rev. Lett. 107, 257602 (2011).CrossRefGoogle Scholar
  12. 12.
    A. Lubk, S. Gemming, and N.A. Spaldin, Phys. Rev. B 80, 104110 (2009).CrossRefGoogle Scholar
  13. 13.
    T. Lottermoser and M. Fiebig, Phys. Rev. B 70, 220407 (2004).CrossRefGoogle Scholar
  14. 14.
    E.K.H. Salje, ChemPhysChem 11, 940 (2010).CrossRefGoogle Scholar
  15. 15.
    S.V. Aert, S. Turner, R. Delville, D. Schryvers, G.V. Tendeloo, and E.K.H. Salje, Adv. Mater. 24, 523 (2012).CrossRefGoogle Scholar
  16. 16.
    W.T. Lee, E.K.H. Salje, L. Goncalves-Ferreira, M. Daraktchiev, and U. Bismayer, Phys. Rev. B 73, 214110 (2006).CrossRefGoogle Scholar
  17. 17.
    X.F. Wu, K.M. Rabe, and D. Vanderbilt, Phys. Rev. B 83, 020104 (2011).CrossRefGoogle Scholar
  18. 18.
    J.S. Urbach, R.C. Madison, and J.T. Markert, Phys. Rev. Lett. 75, 276 (1995).CrossRefGoogle Scholar
  19. 19.
    K.A. Dahmen, J.P. Sethna, M.C. Kuntz, and O. Perkovic, J. Magn. Magn. Mater. 226, 1287 (2001).CrossRefGoogle Scholar
  20. 20.
    E. Vives, J. Ortin, L. Manosa, L. Rafols, R. Perez-Magrane, and A. Planes, Phys. Rev. Lett. 72, 1694 (1994).CrossRefGoogle Scholar
  21. 21.
    F.J. Perez-Reche, E. Vives, L. Manosa, and A. Planes, Phys. Rev. Lett. 87, 195701 (2001).CrossRefGoogle Scholar
  22. 22.
    F.J. Perez-Reche, B. Tadic, L. Manosa, A. Planes, and E. Vives, Phys. Rev. Lett. 93, 195701 (2004).CrossRefGoogle Scholar
  23. 23.
    F.J. Perez-Reche, F. Casanova, E. Vives, L. Manosa, A. Planes, J. Marcos, X. Batlle, and A. Labarta, Phys. Rev. B 73, 014110 (2006).CrossRefGoogle Scholar
  24. 24.
    M.-C. Miguel and S. Zapperi, Science 312, 1151 (2006).CrossRefGoogle Scholar
  25. 25.
    D.M. Dimiduk, C. Woodward, R. LeSar, and M.D. Uchic, Science 312, 1188 (2006).CrossRefGoogle Scholar
  26. 26.
    K.A. Dahmen, Y. Ben-Zion, and J.T. Uhl, Phys. Rev. Lett. 102, 175501 (2009).CrossRefGoogle Scholar
  27. 27.
    E. Salje, X. Ding, Z. Zhao, T. Lookman, and A. Saxena, Phys. Rev. B 83, 104109 (2011).CrossRefGoogle Scholar
  28. 28.
    X. Ding, Z. Zhao, T. Looman, A. Saxena, and E. Salje, Adv. Mater. 24, 5385 (2012).CrossRefGoogle Scholar
  29. 29.
    E. Salje, X. Ding, Z. Zhao, and T. Looman, Appl. Phys. Lett. 100, 222905 (2012).CrossRefGoogle Scholar
  30. 30.
    X. Ding, Z. Zhao, T. Looman, J. Sun, A. Saxena, and E. Salje, Phys. Rev. B, under review.Google Scholar
  31. 31.
    E.K.H. Salje, Phase Transitions in Ferroelastic and Co-Elastic Crystals (Cambridge, UK: Cambridge University Press, 1993).Google Scholar
  32. 32.
    K. Bhattacharya, S. Conti, G. Zanzotto, and J. Zlmmer, Nature 428, 55 (2004).CrossRefGoogle Scholar
  33. 33.
    G.R. Barsch and J.A. Krumhansl, Phys. Rev. Lett. 53, 1069 (1984).CrossRefGoogle Scholar
  34. 34.
    J.W. Cahn, Y. Mishin, and A. Suzuki, Acta Mater. 54, 4953 (2006).CrossRefGoogle Scholar
  35. 35.
    Y. Mishin, A. Suzuki, B.P. Uberuaga, and A.F. Voter, Phys. Rev. B 75, 224101 (2007).CrossRefGoogle Scholar
  36. 36.
    D.A. Molodov, V.A. Ivanov, and G. Gottstein, Acta Mater. 55, 1843 (2007).CrossRefGoogle Scholar
  37. 37.
    S. Li, X. Ding, J. Li, X. Ren, J. Sun, and E. Ma, Nano Lett. 10, 1774 (2010).CrossRefGoogle Scholar
  38. 38.
    S. Li, X. Ding, J. Li, X. Ren, J. Sun, E. Ma, and T. Lookman, Phys. Rev. B 81, 245433 (2010).CrossRefGoogle Scholar
  39. 39.
    S. Li, X. Ding, J. Deng, T. Lookman, J. Li, X. Ren, J. Sun, and A. Saxena, Phys. Rev. B 82, 205435 (2010).CrossRefGoogle Scholar
  40. 40.
    M.C. Gallardo, J. Manchado, F.J. Romero, J.D. Cerro, E.K.H. Salje, A. Planes, E. Vives, R. Romero, and M. Stipcich, Phys. Rev. B 81, 174102 (2010).CrossRefGoogle Scholar
  41. 41.
    R.J. Harrison and E.K.H. Salje, Appl. Phys. Lett. 97, 021907 (2010).CrossRefGoogle Scholar
  42. 42.
    S. Field, J. Witt, F. Nori, and X. Ling, Phys. Rev. Lett. 74, 1206 (1995).CrossRefGoogle Scholar
  43. 43.
    L. Carrillo, L. Mañosa, J. Ortín, A. Planes, and E. Vives, Phys. Rev. Lett. 81, 1889 (1998).CrossRefGoogle Scholar
  44. 44.
    A.M. Bratkovsky, S.C. Marais, V. Heine, and E.K.H. Salje, J. Phys.: Condens. Matter 6, 3679 (1994).CrossRefGoogle Scholar
  45. 45.
    A.M. Bratkovsky, E.K.H. Salje, S.C. Marais, and V. Heine, Phase Transit. 48, 1 (1994).CrossRefGoogle Scholar
  46. 46.
    E.K.H. Salje and K. Parlinkski, Supercond. Sci. Technol. 4, 93 (1991).CrossRefGoogle Scholar
  47. 47.
    W.W. Schmahl, A. Putnis, E.K.H. Salje, P. Freeman, A. Graeme-Barber, R. Jones, K.K. Singh, J. Blunt, P.P. Edwards, J. Loram, and K. Mirza, Philos. Mag. Lett. 60, 241 (1989).CrossRefGoogle Scholar

Copyright information

© TMS 2012

Authors and Affiliations

  • X. Ding
    • 1
    • 2
  • T. Lookman
    • 2
  • E. K. H. Salje
    • 3
  • A. Saxena
    • 2
  1. 1.State Key Laboratory for Mechanical Behavior of MaterialsXi’an Jiaotong UniversityXi’anPeople’s Republic of China
  2. 2.Theoretical DivisionLos Alamos National LaboratoryLos AlamosUSA
  3. 3.Department of Earth SciencesUniversity of CambridgeCambridgeUK

Personalised recommendations