JOM

, Volume 65, Issue 1, pp 99–106 | Cite as

Multiscale, Multiphysics Numerical Modeling of Fusion Welding with Experimental Characterization and Validation

  • Mingming Tong
  • Gregory Duggan
  • Jun Liu
  • Yu Xie
  • Mike Dodge
  • Lee Aucott
  • Hongbiao Dong
  • Ruslan L. Davidchack
  • Jon Dantzig
  • Olga Barrera
  • Alan C.F. Cocks
  • Hiroto Kitaguchi
  • Sergio Lozano-Perez
  • Chuangxin Zhao
  • Ian Richardson
  • Anton Kidess
  • Chris R. Kleijn
  • Shuwen Wen
  • Roger Barnett
  • David J. Browne
Article

Abstract

Various physical interfacial phenomena occur during the process of welding and influence the final properties of welded structures. As the features of such interfaces depend on physics that resolve at different spatial scales, a multiscale and multiphysics numerical modeling approach is necessary. In a collaborative research project Modeling of Interface Evolution in Advanced Welding, a novel strategy of model linking is employed in a multiscale, multiphysics computational framework for fusion welding. We only directly link numerical models that are on neighboring spatial scales instead of trying to link all submodels directly together through all available spatial scales. This strategy ensures that the numerical models assist one another via smooth data transfer, avoiding the huge difficulty raised by forcing models to attempt communication over many spatial scales. Experimental activities contribute to the modeling work by providing valuable input parameters and validation data. Representative examples of the results of modeling, linking and characterization are presented.

References

  1. 1.
    Z. Jiao, C. Song, T. Lin, and P. He, Comput. Mater. Sci. 50, 3385 (2011).CrossRefGoogle Scholar
  2. 2.
    J. Song and D.L. Srolovitz, J. Mech. Phys. Solids 57, 776 (2009).CrossRefGoogle Scholar
  3. 3.
    X. Zhan, Y. Wei, and Z. Dong, J. Mater. Process. Technol. 208, 1 (2008).CrossRefGoogle Scholar
  4. 4.
    W. Tan, N. Bailey, and Y. Shin, Comput. Mater. Sci. 50, 2573 (2011).CrossRefGoogle Scholar
  5. 5.
    J. Zhou and H.L. Tsai, Int. J. Heat Mass Transf. 51, 4353 (2008).MATHCrossRefGoogle Scholar
  6. 6.
    G. Xu, J. Hub, and H.L. Tsai, Int. J. Heat Mass Transf. 52, 1709 (2009).MATHCrossRefGoogle Scholar
  7. 7.
    O. Grong, Metallurgical Modelling of Welding, 2nd rev. ed. (London, U.K.: Maney Publishing, 1997).Google Scholar
  8. 8.
    R.W. Hamilton, D. See, S. Butler, and P.D. Lee, Mater. Sci. Eng. A 343, 290 (2003).CrossRefGoogle Scholar
  9. 9.
    P.D. Lee, A. Chirazi, R.C. Atwood, and W. Wang, Mater. Sci. Eng. A 365, 57 (2004).CrossRefGoogle Scholar
  10. 10.
    J. Wang, M. Li, J. Allison, and P.D. Lee, J. Appl. Phys. 107, 061804 (2010).CrossRefGoogle Scholar
  11. 11.
    M. Tong, J. Liu, Y. Xie, H.B. Dong, R.L. Davidchack, J. Dantzig, D. Ceresoli, N. Marzari, A. Cocks, C. Zhao, I. Richardson, A. Kidess, C. Kleijn, L. Hoglund, S.W. Wen, R. Barnett, and D.J. Browne, IOP Conf. Ser. Mater. Sci. Eng. 33, 012029 (2012).CrossRefGoogle Scholar
  12. 12.
    S. McFadden and D.J. Browne, Appl. Math. Model. 33, 1397 (2009).MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    W.U. Mirihanage and D.J. Browne, Comput. Mater. Sci. 46, 777 (2009).CrossRefGoogle Scholar
  14. 14.
    G.J. Ackland, M.I. Mendelev, D.J. Srolovitz, S. Han, and A.V. Barashev, J. Phys.: Condens. Matter 16, S2629 (2004).CrossRefGoogle Scholar
  15. 15.
    B. Echebarria, R. Folch, A. Karma, and M. Plapp, Phys. Rev. E 70, 061604 (2004).CrossRefGoogle Scholar
  16. 16.
    J.-H. Jeong, N. Goldenfeld, and J.A. Dantzig, Phys. Rev. E 64, 041602-1 (2001).CrossRefGoogle Scholar
  17. 17.
    Y. Xie, H.B. Dong, and J.A. Dantzig (Paper presented at Solidification, EUROMAT 2011, Montpellier, 12–15 September 2011).Google Scholar
  18. 18.
    S.Z. Lu and J.D. Hunt, J. Cryst. Growth 123, 17 (1992).CrossRefGoogle Scholar
  19. 19.
    W. Zhang, G.G. Roy, J.W. Elmer, and T. DebRoy, J. Appl. Phys. 93, 3022 (2003).CrossRefGoogle Scholar
  20. 20.
    G. Duggan, W.U. Mirihanage, M. Tong, and D.J. Browne, IOP Conf. Ser. Mater. Sci. Eng. 33, 012026 (2012).CrossRefGoogle Scholar
  21. 21.
    G. Duggan, M. Tong, and D.J. Browne, IOP Conf. Ser. Mater. Sci. Eng. 27, 012077 (2012).CrossRefGoogle Scholar
  22. 22.
    Z. Saldi, A. Kidess, S. Kenjeres, C. Kleijn, C. Zhao, and I. Richardson (Paper presented at the 2nd European Conference on Microfluidics. Société Hydrotechnique de France, SHF, December 2010).Google Scholar
  23. 23.
    M.F. Dodge, H.B. Dong, M. Milititsky, R.P. Barnett, V.F. Marques, and M.F. Gittos (Paper presented at OMAE2012-83402, Rio de Janeiro, 1–6 July 2012).Google Scholar
  24. 24.
    G.I. Barenblatt, Adv. Appl. Mech. 7, 55 (1962).MathSciNetCrossRefGoogle Scholar
  25. 25.
    P. Sofronis, Y. Liang, and N. Aravas, Eur. J. Mech. A 20, 857 (2001).MATHCrossRefGoogle Scholar

Copyright information

© TMS 2012

Authors and Affiliations

  • Mingming Tong
    • 1
  • Gregory Duggan
    • 1
  • Jun Liu
    • 2
  • Yu Xie
    • 2
  • Mike Dodge
    • 2
    • 3
  • Lee Aucott
    • 2
  • Hongbiao Dong
    • 2
  • Ruslan L. Davidchack
    • 2
  • Jon Dantzig
    • 4
    • 5
  • Olga Barrera
    • 6
  • Alan C.F. Cocks
    • 6
  • Hiroto Kitaguchi
    • 6
  • Sergio Lozano-Perez
    • 6
  • Chuangxin Zhao
    • 7
    • 8
  • Ian Richardson
    • 7
  • Anton Kidess
    • 7
  • Chris R. Kleijn
    • 7
  • Shuwen Wen
    • 9
  • Roger Barnett
    • 3
  • David J. Browne
    • 1
  1. 1.University College DublinBelfieldIreland
  2. 2.University of LeicesterLeicesterUK
  3. 3.TWI Ltd.CambridgeUK
  4. 4.École Polytechnique Federale de LausanneLausanneSwitzerland
  5. 5.Mechanical Science and EngineeringUniversity of IllinoisUrbanaUSA
  6. 6.University of OxfordOxfordUK
  7. 7.Delft University of TechnologyDelftThe Netherlands
  8. 8.Xtreme Technologies GmbHAachenGermany
  9. 9.Tata SteelRotherhamUK

Personalised recommendations