Advertisement

JOM

, Volume 65, Issue 2, pp 301–306 | Cite as

Effects of Zr Additions on the Microstructure and the Mechanical Behavior of PM Mo-Si-B Alloys

  • M. Krüger
  • D. SchliephakeEmail author
  • P. Jain
  • K. S. Kumar
  • G. Schumacher
  • M. Heilmaier
Article

Abstract

In this article, our current understanding on the effects of Zr additions on the properties of three-phase Mo-Si-B alloys is reported. This novel group of materials having high melting points around 2000°C have been identified as potential alloy systems for structural applications at temperatures beyond 1200°C, e.g., for substituting or supplementing state-of-the-art nickel-base superalloys in the power generation industry. In earlier work, we developed various Mo-Si-B materials with very good high-temperature deformation behavior and, in addition, that satisfy oxidation performance. Minimum brittle-to-ductile transition temperatures of around 950°C, however, do not meet the requirements for high-grade stressed structural materials. Therefore, in a second trial, we investigate the influence of the alloying element Zr (which was already proven to increase the strength as well as the ductility of a single-phase Mo-Si alloy) on three-phase Mo-Si-B alloys.

Keywords

Creep Rate Mechanical Alloy Creep Resistance SiO2 Particle ZrO2 Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This research was partly supported by the German Science Foundation (DFG) within the framework of the research unit 727 “Beyond Nickelbase Superalloys.” We thank the members of this research unit (U. Glatzel, R. Völkl, C. Hochmuth, G. Eggeler, C. Somsen, and T. Depka) for fruitful cooperation and Plansee SE (Reutte, Austria) for help in compaction of the mechanically alloyed powders.

References

  1. 1.
    D.M. Berczik, U.S. patents 5,595,616 and 5,693156 (1997).Google Scholar
  2. 2.
    T.A. Parthasarathy, M. Mendiratta, and D.M. Dimiduk, Acta Mater. 50, 1857 (2002).CrossRefGoogle Scholar
  3. 3.
    J.A. Lemberg, M.R. Middlemas, T. Weingärtner, B. Gludovatz, J.K. Chochran, and R.O. Ritchie, Intermetallics 20, 141 (2012).CrossRefGoogle Scholar
  4. 4.
    M. Krüger, S. Franz, H. Saage, M. Heilmaier, J.H. Schneibel, P. Jéhanno, M. Böning, and H. Kestler, Intermetallics 16, 933 (2008).CrossRefGoogle Scholar
  5. 5.
    O. Hassomeris, G. Schumacher, M. Krüger, M. Heilmaier, and J. Banhart, Intermetallics 19, 470 (2011).CrossRefGoogle Scholar
  6. 6.
    M. Krüger, P. Jain, K.S. Kumar, M. Heilmaier, M. Böning, and H. Kestler, J. Phys. Conf. Series 240, 012087 (2010).CrossRefGoogle Scholar
  7. 7.
    M. Krüger, P. Jain, K.S. Kumar, and M. Heilmaier, unpublished work.Google Scholar
  8. 8.
    C.B. Geller, R.W. Smith, J.E. Hack, P. Saxe, and E. Wimmer, Scripta Mater. 52, 205 (2005).CrossRefGoogle Scholar
  9. 9.
    H. Saage, M. Krüger, D. Sturm, M. Heilmaier, J.H. Schneibel, E.P. George, L. Heatherly, Ch Somsen, G. Eggeler, and Y. Yang, Acta Mater. 57, 3895 (2009).CrossRefGoogle Scholar
  10. 10.
    J.H. Schneibel, R.O. Ritchie, J.J. Kruzik, and P.F. Tortorelli, Metall. Mater. Trans. A 36A, 525 (2005).CrossRefGoogle Scholar
  11. 11.
    L. Northcott, Molybdenum - Metallurgy of the Rarer Metals - 5 (New York: Academic Press, 1956).Google Scholar
  12. 12.
    J.H. Schneibel, C.T. Liu, D.S. Easton, and M.C.A. Carmichael, Mater. Sci. Eng., A 261, 78 (1999).CrossRefGoogle Scholar
  13. 13.
    A. Guha, Metals Handbook: Mechanical Testing, Vol. 8 (Materials Park, OH: American Society for Metals, 1985), p. 132.Google Scholar
  14. 14.
    C. Hochmuth, R. Völkl, and U. Glatzel, University Bayreuth, unpublished research, 2012.Google Scholar
  15. 15.
    P.M. Hazzledine, Scripta Metall. Mater. 26, 57 (1992).CrossRefGoogle Scholar
  16. 16.
    J.H. Schneibel, M. Heilmaier, W. Blum, G. Hasemann, and T. Shanmugasundaram, Acta Mater. 59, 1300 (2011).CrossRefGoogle Scholar
  17. 17.
    M. Heilmaier, M. Krüger, and H. Saage, Mater. Sci. Forum 633–634, 549 (2010).Google Scholar
  18. 18.
    P. Jéhanno, M. Heilmaier, H. Saage, M. Böning, H. Kestler, J. Freudenberger, and S. Drawin, Mater. Sci. Eng., A 463, 216 (2007).CrossRefGoogle Scholar
  19. 19.
    S. Burk, B. Gorr, M. Krüger, M. Heilmaier, and H.-J. Christ, JOM 63 (12), 32 (2011).CrossRefGoogle Scholar

Copyright information

© TMS 2012

Authors and Affiliations

  • M. Krüger
    • 1
  • D. Schliephake
    • 2
    Email author
  • P. Jain
    • 3
  • K. S. Kumar
    • 3
  • G. Schumacher
    • 4
  • M. Heilmaier
    • 2
  1. 1.Otto-von-Guericke University Magdeburg, Institute for Materials and Joining TechnologyMagdeburgGermany
  2. 2.Institute for Applied Materials, Karlsruhe Institute for TechnologyKarlsruheGermany
  3. 3.Brown University, School of EngineeringProvidenceUSA
  4. 4.Helmholtz-Zentrum Berlin für Materialien und Energie, Institut für WerkstoffeBerlinGermany

Personalised recommendations