Advertisement

JOM

, Volume 64, Issue 10, pp 1258–1262 | Cite as

Misfit Strain Relaxation Mechanisms in Core/Shell Nanowires

  • Haijian Chu
  • Caizhi Zhou
  • Jian Wang
  • Irene J. Beyerlein
Article

Abstract

In the past decade, core/shell nanowires (NWs) have attracted much attention due to the broad variety of potential applications of these structures in future nanoelectronic and nanophotonic devices. Because of the lattice mismatch between the core and shell materials, crystal dislocations often form to relax the mismatch strains. In this article, we propose a relaxation mechanism for the misfit strains generated in the core/shell NWs, in which lattice dislocations nucleate from the outer surfaces and then propagate to the core/shell interface. An analytical model is developed to predict the critical shell thickness corresponding to defect-free core/shell NWs with respect to the growth direction.

Keywords

Slip System Slip Plane Dislocation Loop Misfit Dislocation Elastic Strain Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors acknowledge the support provided by Los Alamos National Laboratory Directed Research and Development projects DR20110029 and ER20110573. Chu also acknowledges the National Natural Science Foundation for the research support (10602050) and Jiangsu Government Scholarship for overseas studies.

References

  1. 1.
    B. Hua, J. Motohisa, Y. Kobayashi, S. Hara, and T. Fukui, Nano Lett. 9, 112 (2009).CrossRefGoogle Scholar
  2. 2.
    M.J. Tambe, S.K. Lim, M.J. Smith, L.F. Allard, and S. Gradecak, Appl. Phys. Lett. 93, 151917 (2008).CrossRefGoogle Scholar
  3. 3.
    K. Wang, J.J. Chen, W.L. Zhou, Y. Zhang, Y.F. Yan, J. Pern, and A. Mascarenhas, Adv. Mater. 20, 3248 (2008).CrossRefGoogle Scholar
  4. 4.
    H.F. Zhang, C.M. Wang, and L.S. Wang, Nano Lett. 2, 941 (2002).CrossRefGoogle Scholar
  5. 5.
    C. Thelander, P. Agarwal, S. Brongersma, J. Eymery, L.F. Feiner, A. Forchel, M. Scheffler, W. Riess, B.J. Ohlsson, U. Gösele, and L. Samuelson, Mater. Today 9, 28 (2006).CrossRefGoogle Scholar
  6. 6.
    O. Hayden, A.B. Greytak, and D.C. Bell, Adv. Mater. 17, 701 (2005).CrossRefGoogle Scholar
  7. 7.
    T. Bryllert, L.E. Wernersson, L.E. Froberg, and L. Samuelson, IEEE Electron Device Lett. 27, 323 (2006).CrossRefGoogle Scholar
  8. 8.
    I.A. Ovid’ko and A.G. Sheinerman, J. Phys. Condes. Matter. 16, 7225 (2004).CrossRefGoogle Scholar
  9. 9.
    I.A. Ovid’ko and A.G. Sheinerman, Rev. Adv. Mater. Sci. 27, 83 (2011).Google Scholar
  10. 10.
    M. Basheer, K.S. Rajni, V.S. Vidhya, V. Swaminathan, A. Thayumanavan, K.R. Murali, and M. Jayachandran, Cryst. Res. Technol. 46, 261 (2011).CrossRefGoogle Scholar
  11. 11.
    T. Stoltenhoff, C. Borchers, F. Gartner, and H. Kreye, Surf. Coat. Technol. 200, 4947 (2006).CrossRefGoogle Scholar
  12. 12.
    H.M. Lin, Y.L. Chen, J. Yang, Y.C. Liu, K.M. Yin, J.J. Kai, F.R. Chen, L.C. Chen, Y.F. Chen, and C.C. Chen, Nano Lett. 3, 537 (2003).CrossRefGoogle Scholar
  13. 13.
    X. Dai, S.A. Dayeh, V. Veeramuthu, A. Larrue, J. Wang, H.B. Su, and C. Soci, Nano Lett. 11, 4947 (2011).CrossRefGoogle Scholar
  14. 14.
    S.A. Dayeh, J. Wang, N. Li, J.Y. Huang, A.V. Gin, and S.T. Picraux, Nano Lett. 11, 4200 (2011).CrossRefGoogle Scholar
  15. 15.
    J. Wang, H.C. Huang, S.V. Kesapragada, and D. Gall, Nano Lett. 5, 2505 (2005).CrossRefGoogle Scholar
  16. 16.
    G.E. Beltz and L.B. Freund, Philos. Mag. A 69, 183 (1994).CrossRefGoogle Scholar
  17. 17.
    L.B. Freund, MRS Bull. 17, 52 (1992).Google Scholar
  18. 18.
    I.A. Goldthorpe, A.F. Marshall, and P.C. McIntyre, Nano Lett. 8, 4081 (2008).CrossRefGoogle Scholar
  19. 19.
    K.L. Kavanagh, Semicond. Sci. Technol. 25, 024006 (2010).CrossRefGoogle Scholar
  20. 20.
    R. Popovitz-Biro, A. Kretinin, P. Von Huth, and H. Shtrikman, Cryst. Growth Des. 11, 3858 (2011).CrossRefGoogle Scholar
  21. 21.
    S. Raychaudhuri and E.T. Yu, J. Appl. Phys. 99, 114308 (2006).CrossRefGoogle Scholar
  22. 22.
    J.D. Eshelby, Proc. R. Soc. Lond. A 241, 376 (1957).MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    T. Mura, Micromechanics of Defects in Solids (New York: Springer, 1987).CrossRefGoogle Scholar
  24. 24.
    H.J. Chu, J. Wang, C.Z. Zhou, and I.J. Beyerlein, Acta Mater. 59, 7114 (2011).CrossRefGoogle Scholar
  25. 25.
    H.J. Chu, J. Wang, C.Z. Zhou, and I.J. Beyerlein, J. Mech. Phys. Solid., in press (2012).Google Scholar
  26. 26.
    S. Timoshenko and J.N. Goodier, Theory of Elasticity (Columbus, OH: McGraw Hill, 1951).zbMATHGoogle Scholar
  27. 27.
    H.J. Chu, E. Pan, J. Wang, and I.J. Beyerlein, Int. J. Solids Struct. 48, 1164 (2011).zbMATHCrossRefGoogle Scholar
  28. 28.
    C. Zhou, S.B. Biner, and R. LeSar, Acta Mater. 58, 1565 (2010).CrossRefGoogle Scholar

Copyright information

© TMS 2012

Authors and Affiliations

  • Haijian Chu
    • 1
    • 2
  • Caizhi Zhou
    • 1
  • Jian Wang
    • 1
  • Irene J. Beyerlein
    • 1
  1. 1.Los Alamos National LaboratoryLos AlamosUSA
  2. 2.Research Group of MechanicsYanzhou UniversityYangzhouChina

Personalised recommendations