Advertisement

JOM

, Volume 64, Issue 10, pp 1192–1207 | Cite as

Structure–Property–Functionality of Bimetal Interfaces

  • I. J. Beyerlein
  • N. A. Mara
  • J. Wang
  • J. S. Carpenter
  • S. J. Zheng
  • W. Z. Han
  • R. F. Zhang
  • K. Kang
  • T. Nizolek
  • T. M. Pollock
Article

Abstract

Interfaces, such as grain boundaries, phase boundaries, and surfaces, are important in materials of any microstructural size scale, whether the microstructure is coarse-grained, ultrafine-grained, or nano-grained. In nanostructured materials, however, they dominate material response and as we have seen many times over, can lead to extraordinary and unusual properties that far exceed those of their coarse-grained counterparts. In this article, we focus on bimetal interfaces. To best elucidate interface structure–property–functionality relationships, we focus our studies on simple layered composites composed of an alternating stack of two metals with bimetal interfaces spaced less than 100 nm. We fabricate these nanocomposites by either a bottom–up method (physical vapor deposition) or a top–down method (accumulative roll bonding) to produce two distinct interface types. Atomic-scale differences in interface structure are shown to result in profound effects on bulk-scale properties.

Keywords

Slip System Burger Vector Physical Vapor Deposition Misfit Dislocation Accumulative Roll Bonding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

Modeling work by I.J.B., R.F.Z. and K.K. was supported by the Center for Materials at Irradiation and Mechanical Extremes, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number 2008LANL1026. Modeling and experimental work by N.A.M., J.S.C., S.J.Z., W.Z.H., and J.W. was supported by a Los Alamos National Laboratory (LANL) Directed Research and Development (LDRD) project DR20110029. T.N. was supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program. Nanomechanical testing for this work was performed at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences user facility. Los Alamos National Laboratory, an affirmative action equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396.

References

  1. 1.
    A. Misra and R.G. Hoagland, J. Mater. Res. 20, 2046 (2005).CrossRefGoogle Scholar
  2. 2.
    B.M. Clemens, H. Kung, and S.A. Barnett, MRS Bull. 24, 20 (1999).Google Scholar
  3. 3.
    C.C. Aydiner, D.W. Brown, N.A. Mara, J. Almer, and A. Misra, Appl. Phys. Lett. 94, 031906 (2009).CrossRefGoogle Scholar
  4. 4.
    N.A. Mara, D. Bhattacharyya, P. Dickerson, R.G. Hoagland, and A. Misra, Appl. Phys. Lett. 92, 231901 (2008).CrossRefGoogle Scholar
  5. 5.
    W.Z. Han, A. Misra, N.A. Mara, T.C. Germann, J.K. Baldwin, T. Shimada, and S.N. Luo, Philos. Mag. 91, 4172 (2011).CrossRefGoogle Scholar
  6. 6.
    X. Zhang, N. Li, O. Anderoglu, H. Wang, J.G. Swadener, T. Hochbauer, A. Misra, and R.G. Hoagland, Nucl. Instrum. Methhods B 261, 1129 (2007).CrossRefGoogle Scholar
  7. 7.
    L. Thilly, M. Veron, O. Ludwig, F. Lecouturier, and J.P. Peyrade, Philos. Mag. A 82, 925 (2002).CrossRefGoogle Scholar
  8. 8.
    V.M. Segal, K.T. Hartwig, and R.E. Goforth, Mater. Sci. Eng. A 224, 107 (1997).CrossRefGoogle Scholar
  9. 9.
    N. Li, J. Wang, J.Y. Huang, A. Misra, and X. Zhang, Scr. Mater. 63, 363 (2010).CrossRefGoogle Scholar
  10. 10.
    S.-B. Lee, J.E. LeDonne, S.C.V. Lim, I.J. Beyerlein, and A.D. Rollett, Acta Mater. 60, 1747 (2012).CrossRefGoogle Scholar
  11. 11.
    W.Z. Han, J.S. Carpenter, J. Wang, I.J. Beyerlein, and N.A. Mara, Appl. Phys. Lett. 100, 011911 (2012).CrossRefGoogle Scholar
  12. 12.
    S.J. Zheng, I.J. Beyerlein, J. Wang, J.S. Carpenter, W.Z. Han, and N.A. Mara, Acta Mater. (2012). doi: 10.1016/j.actamat.2012.07.027.
  13. 13.
    J.S. Carpenter, S.C. Vogel, J. LeDonne, D.L. Hammon, I.J. Beyerlein, and N.A. Mara, Acta Mater. 60, 1576 (2012).CrossRefGoogle Scholar
  14. 14.
    J.S. Carpenter, X. Liu, A. Darbal, N.T. Nuhfer, R.J. McCabe, S.C. Vogel, J.E. LeDonne, A.D. Rollett, K. Barmak, I.J. Beyerlein, and N.A. Mara, Scr. Mater. 67, 336 (2012).CrossRefGoogle Scholar
  15. 15.
    F. Dupouy, E. Snoeck, M.J. Casanove, C. Roucau, J.P. Peyrade, and S. Askenazy, Scr. Mater. 34, 1067 (1996).CrossRefGoogle Scholar
  16. 16.
    L. Thilly, M. Veron, O. Ludwig, and F. Lecouturier, Mater. Sci. Eng. A 309/310, 510 (2001).CrossRefGoogle Scholar
  17. 17.
    J.K. Chen, D. Farkas, and W.T. Reynolds Jr., Acta Mater. 45, 4415 (1997).CrossRefGoogle Scholar
  18. 18.
    J.K. Chen, G. Chen, and W.T. Reynolds Jr., Philos. Mag. A 78, 405 (1998).CrossRefGoogle Scholar
  19. 19.
    M.J. Demkowicz and L. Thilly, Acta Mater. 59, 7744 (2011).CrossRefGoogle Scholar
  20. 20.
    K. Kang, J. Wang, and I.J. Beyerlein, J. Appl. Phys. 111, 053531 (2012).CrossRefGoogle Scholar
  21. 21.
    M.J. Demkowicz, R.G. Hoagland, and J.P. Hirth, Phys. Rev. Lett. 100, 2 (2008).CrossRefGoogle Scholar
  22. 22.
    J. Wang, K. Kang, R.F. Zhang, S.J. Zheng, I.J. Beyerlein, and N.A. Mara, JOM (2012). doi: 10.1007/s11837-012-0429-7.
  23. 23.
    J. Wang, R.G. Hoagland, X.Y. Liu, and A. Misra, Acta Mater. 59, 3164 (2011).CrossRefGoogle Scholar
  24. 24.
    R.F. Zhang, J. Wang, I.J. Beyerlein, A. Misra, and T.C. Germann, Acta Mater. 60, 2855 (2012).CrossRefGoogle Scholar
  25. 25.
    R.F. Zhang, J. Wang, I.J. Beyerlein, and T.C. Germann, Scr. Mater. 65, 1022 (2011).CrossRefGoogle Scholar
  26. 26.
    G.S. Xu and A.S. Argon, Philos. Mag. Lett. 80, 605 (2000).CrossRefGoogle Scholar
  27. 27.
    R.F. Zhang, J. Wang, X.Y. Liu, I.J. Beyerlein, and T.C. Germann (Paper presented at the Proceedings of the 17th APS Topical Conference on Shock Compression of Condensed Matter 1426, 1251, 2012).Google Scholar
  28. 28.
    A. Misra, J.P. Hirth, and R.G. Hoagland, Acta Mater. 53, 4817 (2005).CrossRefGoogle Scholar
  29. 29.
    E. Werner and W. Prantl, Acta Metall. Mater. 38, 533 (1990).CrossRefGoogle Scholar
  30. 30.
    T.C. Lee, I.M. Robertson, and H.K. Birnbaum, Scr. Mater. 23, 799 (1989).Google Scholar
  31. 31.
    J. Wang, R.G. Hoagland, J.P. Hirth, and A. Misra, Acta Mater. 56, 5685 (2008).CrossRefGoogle Scholar
  32. 32.
    J. Wang and A. Misra, Curr. Opin. Solid State Mater. Sci. 15, 20 (2011).CrossRefGoogle Scholar
  33. 33.
    J. Wang, I.J. Beyerlein, N.A. Mara, and D. Bhattacharyya, Scr. Mater. 64, 1083 (2011).CrossRefGoogle Scholar
  34. 34.
    J. Wang, R.G. Hoagland, and A. Misra, Appl. Phys. Lett. 94, 131910 (2009).CrossRefGoogle Scholar
  35. 35.
    S. Mahesh, C.N. Tomé, R.J. McCabe, G.C. Kaschner, I.J. Beyerlein, and A. Misra, Metall. Mater. Trans. A 35A, 3763 (2004).CrossRefGoogle Scholar
  36. 36.
    D.J. Alexander and I.J. Beyerlein, Mater. Sci. Eng. A 410, 480 (2005).CrossRefGoogle Scholar
  37. 37.
    P.M. Anderson, J.F. Bingert, A. Misra, and J.P. Hirth, Acta Mater. 51, 6059 (2003).CrossRefGoogle Scholar
  38. 38.
    D. Raabe, F. Heringhaus, U. Hangen, and G. Gottstein, Z. Metallkd. 86, 405 (1995).Google Scholar
  39. 39.
    A.F. Voter, Los Alamos Unclassified Technical Report No. LA-UR 93-3901 (1993).Google Scholar
  40. 40.
    G.J. Ackland and R. Thetford, Philos. Mag. A 56, 15 (1987).CrossRefGoogle Scholar
  41. 41.
    R.F. Zhang, J. Wang, I.J. Beyerlein, and T.C. Germann, Philos. Mag. Lett. 91, 731 (2011).CrossRefGoogle Scholar
  42. 42.
    F. Cao, I.J. Beyerlein, F.L. Addessio, B.H. Sencer, C.P. Trujillo, E.K. Cerreta, and G.T. Gray III, Acta Mater. 58, 549 (2010).CrossRefGoogle Scholar
  43. 43.
    I.J. Beyerlein, N.A. Mara, D. Bhattacharyya, C.T. Necker, and D.J. Alexander, Int. J. Plast. 27, 121 (2011).CrossRefGoogle Scholar
  44. 44.
    N.A. Mara, I.J. Beyerlein, J.S. Carpenter, and J. Wang, JOM (2012). doi: 10.1007/s11837-012-0430-1.
  45. 45.
    N. Li, N.A. Mara, J. Wang, P. Dickerson, J.Y. Huang, and A. Misra, Scr. Mater. 67, 479 (2012).CrossRefGoogle Scholar
  46. 46.
    A. Misra, J.P. Hirth, R.G. Hoagland, J.D. Embury, and H. Kung, Acta Mater. 52, 2387 (2004).CrossRefGoogle Scholar
  47. 47.
    S.C.V. Lim and A.D. Rollett, Mater. Sci. Eng. A 520, 189 (2009).CrossRefGoogle Scholar

Copyright information

© TMS 2012

Authors and Affiliations

  • I. J. Beyerlein
    • 1
  • N. A. Mara
    • 1
  • J. Wang
    • 1
  • J. S. Carpenter
    • 1
  • S. J. Zheng
    • 1
  • W. Z. Han
    • 1
  • R. F. Zhang
    • 1
  • K. Kang
    • 1
  • T. Nizolek
    • 2
  • T. M. Pollock
    • 2
  1. 1.Los Alamos National LaboratoryLos AlamosUSA
  2. 2.University of California at Santa BarbaraSanta BarbaraUSA

Personalised recommendations