Advertisement

JOM

, Volume 64, Issue 8, pp 997–1001 | Cite as

Waste Heat Recovery from Blast Furnace Slag by Chemical Reactions

  • Yuelin Qin
  • Xuewei LvEmail author
  • Chenguang Bai
  • Guibao Qiu
  • Pan Chen
Article

Abstract

Blast furnace (BF) slag, which is the main byproduct in the ironmaking process, contains large amounts of sensible heat. To recover the heat, a new waste heat-recovery system—granulating molten BF slag by rotary multinozzles cup atomizer and pyrolyzing printed circuited board with obtained hot BF slag particle—was proposed in this study. The feasibility of the waste heat-recovery system was verified by dry granulation and pyrolyzation experiments. The energy of hot BF slag could be converted to chemical energy through the pyrolysis reaction, and a large amount of combustible gas like CO, H2, C m H n , and CH4 can be generated during the process.

Keywords

Blast Furnace Print Circuit Board Blast Furnace Slag Molten Slag Pyrolysis Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was supported by the Fok Ying Tung Education Foundation (Grant 131048) and the Fundamental Research Funds for Chongqing University Postgraduates’ Science and Innovation Fund (Grant CDJZR11130029).

References

  1. 1.
    Y. Qin, G. Qiu, C. Bai, X. Lv, and Q. Deng, China Metall. 21, 1 (2011).Google Scholar
  2. 2.
    N. Maruoka, T. Mizuochi, H. Purwanto, and T. Akiyama, ISIJ Int. 44, 257 (2004).CrossRefGoogle Scholar
  3. 3.
    N. Maruoka, Sato, J. Yagi, and T. Akiyama, ISIJ Int. 42, 215 (2002).Google Scholar
  4. 4.
    E. Kasai, T. Kitajima, T. Akiyama, J. Yagi, and F. Saito, ISIJ Int. 37, 1031 (1997).CrossRefGoogle Scholar
  5. 5.
    G. Bisio, Energy 22, 501 (1997).CrossRefGoogle Scholar
  6. 6.
    T. Akiyama, H. Sato, A. Muramatsu, and J. Yagi, ISIJ Int. 33, 1136 (1993).CrossRefGoogle Scholar
  7. 7.
    T. Mizuochi, V. Kochura, T. Akiyama, E. Kasai, and J. Yagi, ISIJ Int. 41, 1423 (2001).CrossRefGoogle Scholar
  8. 8.
    C. Duan, Y. Zhao, and X. Wen, J. China Univ. Min. Technol. 34, 730 (2005).Google Scholar
  9. 9.
    J. Guan, Y. Li, and M. Lu, J. Anal. Appl. Pyrol. 83, 185 (2008).CrossRefGoogle Scholar
  10. 10.
    H. Antrekowitschl, M. Potesser, W. Spruzina, and F. Prior, EPD Congress 2006, ed. S.M. Howard, R.L. Stephens, C.J. Newman, J.-Y.J. Hwang, A.M. Gokhale, T.T. Chen, T.P. Battle, M.L. Free, B.R. Davis, C.L. Harris, H. Henein, P.N. Anyalebechi, A.C. Powell, G.K. Krumdick, and C.K. Belt (Warrendale, PA: TMS, 2006), p. 899.Google Scholar
  11. 11.
    R. Tan, T. Wang, and S. Tan, Environ. Pollut. Control 29, 599 (2007).Google Scholar
  12. 12.
    H. Purwanto and T. Akiyama, Int. J. Hydrogen Energy 31, 491 (2006).Google Scholar
  13. 13.
    L. Zhao, H. Wang, S. Qing, and H.L. Liu, J. Nat. Gas Chem. 19, 403 (2010).CrossRefGoogle Scholar
  14. 14.
    L. Zhang, X. Zuo, and J. Kers, REWAS 2008, ed. B. Mishra, C. Ludwig, and S. Das (Warrendale, PA: TMS, 2008), p. 699. Google Scholar
  15. 15.
    L. Sun, J. Lu, and S. Wang, J. Fuel Chem. Technol. 30, 285 (2002).Google Scholar

Copyright information

© TMS 2012

Authors and Affiliations

  • Yuelin Qin
    • 1
  • Xuewei Lv
    • 1
    Email author
  • Chenguang Bai
    • 1
  • Guibao Qiu
    • 1
  • Pan Chen
    • 1
  1. 1.School of Materials Science and EngineeringChongqing UniversityChongqingChina

Personalised recommendations