, Volume 64, Issue 7, pp 830–838 | Cite as

Alloy Design and Properties Optimization of High-Entropy Alloys



This article reviews the recent work on the high-entropy alloys (HEAs) in our group and others. HEAs usually contain five or more elements, and thus, the phase diagram of HEAs is often not available to be used to design the alloys. We have proposed that the parameters of δ and Ω can be used to predict the phase formation of HEAs, namely Ω ≥ 1.1 and δ ≤ 6.6%, which are required to form solid-solution phases. To test this criterion, alloys of TiZrNbMoV x and CoCrFeNiAlNb x were prepared. Their microstructures mainly consist of simple body-centered cubic solid solutions at low Nb contents. TiZrNbMoV x alloys possess excellent mechanical properties. Bridgman solidification was also used to control the microstructure of the CoCrFeNiAl alloy, and its plasticity was improved to be about 30%. To our surprise, the CoCrFeNiAl HEAs exhibit no apparent ductile-to-brittle transition even when the temperatures are lowered from 298 K to 77 K.


Lave Phase Withdrawal Velocity Copper Mold Casting Bridgman Solidification Hypereutectic Structure 



The authors acknowledge the financial support by the Natural Science Foundation of China (No. 50971019). P.K.L. appreciates the support from the U.S. National Science Foundation (grants DMR-0909037, CMMI-0900271, and CMMI-1100080) and Grant NEUP 119262 from the Department of Energy.


  1. 1.
    J.W. Qiao, E.W. Huang, F. Jiang, T. Ungar, G. Csiszar, L. Li, Y. Ren, P.K. Liaw, and Y. Zhang, Appl. Phys. Lett. 97, 171910 (2010).CrossRefGoogle Scholar
  2. 2.
    K. Zhao, X.X. Xia, H.Y. Bai, D.Q. Zhao, and W.H. Wang, Appl. Phys. Lett. 98, 141913 (2011).CrossRefGoogle Scholar
  3. 3.
    H.B. Lou, X.D. Wang, F. Xu, S.Q. Ding, Q.P. Cao, K. Hono, and J.Z. Jiang, Appl. Phys. Lett. 99, 051910 (2011).CrossRefGoogle Scholar
  4. 4.
    Y.J. Zhou, Y. Zhang, F.J. Wang, and G.L. Chen, Appl. Phys. Lett. 92, 241917 (2008).CrossRefGoogle Scholar
  5. 5.
    J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Adv. Eng. Mater. 6, 299 (2004).CrossRefGoogle Scholar
  6. 6.
    X.F. Wang, Y. Zhang, Y. Qiao, and G.L. Chen, Intermetallics 15, 357 (2007).CrossRefGoogle Scholar
  7. 7.
    Y.J. Zhou, Y. Zhang, Y.L. Wang, and G.L. Chen, Appl. Phys. Lett. 90, 181904 (2007).CrossRefGoogle Scholar
  8. 8.
    O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, and P.K. Liaw, Intermetallics 18, 1758 (2010).CrossRefGoogle Scholar
  9. 9.
    M.H. Chuang, M.H. Tsai, W.R. Wang, S.J. Lin, and J.W. Yeh, Acta Mater. 59, 6308 (2011).CrossRefGoogle Scholar
  10. 10.
    S. Singh, N. Wanderka, B.S. Murty, U. Glatzel, and J. Banhart, Acta Mater. 59, 182 (2011).CrossRefGoogle Scholar
  11. 11.
    J.W. Yeh, S.J. Lin, T.S. Chin, J.Y. Gan, S.K. Chen, T.T. Shun, C.H. Tsau, and S.Y. Chou, Metall. Mater. Trans. A 35, 2533 (2004).CrossRefGoogle Scholar
  12. 12.
    Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, and P.K. Liaw, Adv. Eng. Mater. 10, 534 (2008).CrossRefGoogle Scholar
  13. 13.
    Y.J. Zhou, Y. Zhang, Y.L. Wang, and G.L. Chen, Mater. Sci. Eng. A 454–455, 260 (2007).Google Scholar
  14. 14.
    Y. Zhang, G.L. Chen, and C.L. Gan, J. ASTM Int. 7, 1 (2010).CrossRefGoogle Scholar
  15. 15.
    L.H. Wen, H.C. Kou, J.S. Li, H. Chang, X.Y. Xue, and L. Zhou, Intermetallics 17, 266 (2009).CrossRefGoogle Scholar
  16. 16.
    C.W. Tsai, M.H. Tsai, J.W. Yeh, and C.C. Yang, J. Alloy Compd. 490, 160 (2010).CrossRefGoogle Scholar
  17. 17.
    J.M. Zhu, H.M. Fu, H.F. Zhang, A.M. Wang, H. Li, and Z.Q. Hu, Mater. Sci. Eng. A 527, 6975 (2010).CrossRefGoogle Scholar
  18. 18.
    O.N. Senkov, G.B. Wilks, J.M. Scott, and D.B. Miracle, Intermetallics 19, 698 (2011).CrossRefGoogle Scholar
  19. 19.
    C.M. Lin and H.L. Tsai, Intermetallics 19, 288 (2011).CrossRefGoogle Scholar
  20. 20.
    H. Zhang, Y. Pan, and Y.Z. He, J. Therm. Spray Technol. 20, 1049 (2011).CrossRefGoogle Scholar
  21. 21.
    X. Yang and Y. Zhang, Mater. Chem. Phys. 132, 233 (2012).CrossRefGoogle Scholar
  22. 22.
    Y. Zhang, Mater. Sci. Forum 654–656, 1058 (2010).CrossRefGoogle Scholar
  23. 23.
    C. Kittel, Introduction to Solid State Physics (New York: Wiley, 1996), p. 78.Google Scholar
  24. 24.
    S.G. Ma and Y. Zhang, Mater. Sci. Eng. A 532, 480 (2012).CrossRefGoogle Scholar
  25. 25.
    Y. Zhang, S.G. Ma, and J.W. Qiao, Metall. Mater. Trans. A 1 (2011).Google Scholar
  26. 26.
    J.A. Hanna, I. Baker, M.W. Wittmann, and P.R. Munroe, J. Mater. Res. 20, 791 (2005).CrossRefGoogle Scholar
  27. 27.
    J.W. Qiao, S.G. Ma, E.W. Huang, C.P. Chuang, P.K. Liaw, and Y. Zhang, Mater. Sci. Forum 688, 419 (2011).CrossRefGoogle Scholar
  28. 28.
    J. Rosler, H. Harders, and M. Baker, Mechanical Behavior of Engineering Materials (Berlin, Germany: Springer, 2007), p. 205.Google Scholar

Copyright information

© TMS 2012

Authors and Affiliations

  1. 1.High-Entropy Theory Center, State Key Laboratory for Advanced Metals and MaterialsUniversity of Science and Technology BeijingBeijingChina
  2. 2.Department of Materials Science and EngineeringUniversity of TennesseeKnoxvilleUSA

Personalised recommendations