JOM

, Volume 63, Issue 11, pp 24–32 | Cite as

Atoms to autos: A multi-scale approach to modeling aluminum deformation

  • P. E. Krajewski
  • L. G. HectorJr.
  • Y. Qi
  • R. K. Mishra
  • A. K. Sachdev
  • A. F. Bower
  • W. A. Curtin
Overview Multi-scale Modeling of Metal Forming

Abstract

A multi-scale, computational design approach for aluminum sheet alloys, which includes key inputs from the electronic, atomistic, microstructural, and continuum length scales, is reviewed within the context of room and elevated temperature forming. Specific examples, which are aimed at improving aluminum sheet materials for automobile components, include prediction of flow curves from tensile testing, forming limit diagrams, and component forming.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.A. Ayres, Metall. Trans. A, 10A (1979), pp. 849–854.Google Scholar
  2. 2.
    W.H.L. Hooper, J. Institute of Metals, 81 (1952), pp. 563–568.Google Scholar
  3. 3.
    G. Kresse and J. Furthmüller, Comput. Mat. Sci., 6 (1996), pp. 15–50.CrossRefGoogle Scholar
  4. 4.
    C. Woodward and S. Rao, Phys. Rev. Lett., 88 (2002), pp. 216402, 1–4.CrossRefGoogle Scholar
  5. 5.
    J. Hafner, J. Phys.: Condens. Matter, 22 (2010), pp. 384205, 1–12.CrossRefGoogle Scholar
  6. 6.
    G.P.M. Leyson, W.A. Curtin, L.G. Hector, Jr., and C.F. Woodward, Nature Materials, 9 (2010), pp. 750–755.CrossRefGoogle Scholar
  7. 7.
    B.J. Diak and S. Saimoto, Mater. Sci. Eng. A, 234 (1997), pp. 1019–1022.CrossRefGoogle Scholar
  8. 8.
    B.J. Diak, K.R. Upadhyaya, and S. Saimoto, Prog. Mater. Sci., 43 (1998), pp. 223–363.CrossRefGoogle Scholar
  9. 9.
    W.A. Curtin, D.L. Olmsted, and L.G. Hector, Jr., Nature Materials, 5 (2006), pp. 875–880.CrossRefGoogle Scholar
  10. 10.
    S. Kok, M.S. Bharathi, A.J. Beaudoin, C. Fressengeas, G. Ananthakrishna, L.P. Kubin, and M. Lebyodkin, Acta Materialia, 51 (2003), pp. 3651–3662.CrossRefGoogle Scholar
  11. 11.
    M.A. Soare and W.A. Curtin, Acta Materialia, 56 (2008), pp. 4046–4061.CrossRefGoogle Scholar
  12. 12.
    F. Zhang, A.F. Bower, and W.A. Curtin, Int. J. Numerical Methods in Eng., 86 (2011), pp. 70–92.CrossRefGoogle Scholar
  13. 13.
    T. Rasmussen, T. Vegge, T. Leffers, O.B. Pedersen, and K.W. Jacobsen, Phil. Mag. A, 80 (2000), pp. 1273–1290.CrossRefGoogle Scholar
  14. 14.
    G.I. Taylor, J. Inst. Met., 62 (1938), pp. 307–325.Google Scholar
  15. 15.
    W.T. Koiter, Quart. Appl. Math., 11 (1953), pp. 350–354.Google Scholar
  16. 16.
    D. Peirce, R.J. Asaro, and A. Needleman, Acta Metall., 31 (1983), pp. 1951–1976.CrossRefGoogle Scholar
  17. 17.
    J. Rossiter, A. Brahme, M.H. Simha, K. Inal, and R.K. Mishra, Int. J. Plasticity, 26 (2010), pp. 1702–1725.CrossRefGoogle Scholar
  18. 18.
    K.P. Boyle, Materials Science Forum, 495–497 (2005), pp. 1043–1048.CrossRefGoogle Scholar
  19. 19.
    K.H. Kim and Y.M. Koo, J. Mater. Sci. Letters, 20 (2001), pp. 625–627.CrossRefGoogle Scholar
  20. 20.
    A. Brahme, P. Abhijit, K. Inal, R.K. Mishra, and S. Saimoto, Computational Materials Science, 50 (2011), pp. 2898–2909.CrossRefGoogle Scholar
  21. 21.
    F. Zhang, A.F. Bower, R.K. Mishra, and K.P. Boyle, Int. J. Plasticity, 25 (2009), pp. 49–69.CrossRefGoogle Scholar
  22. 22.
    nominally binary Fe ppm. 23. A.I. Taub, P.E. Krajewski, A.A. Luo, and J.N. Owens, JOM, 59(2) (2007), pp. 48–57.CrossRefGoogle Scholar
  23. 24.
    Y. Qi and P.E. Krajewski, Acta Materialia, 55 (2007), pp. 1555–1563.CrossRefGoogle Scholar
  24. 25.
    N. Du, Y. Qi, P.E. Krajewski, and A.F. Bower, Acta Materialia, 58 (2010), pp. 4245–4252.CrossRefGoogle Scholar
  25. 26.
    A.F. Bower and E. Wininger, J. Mechanics and Physics of Solids, 52 (2004), pp. 1289–1317.CrossRefGoogle Scholar
  26. 27.
    S. Agarwal, C.L. Briant, P.E. Krajewski, A.F. Bower, and E.M. Taleff, J. Mater. Eng. Perform., 16 (2007), pp. 170–178.CrossRefGoogle Scholar
  27. 28.
    M.A. Kulas, W.P. Green WP, E.M. Taleff, P.E. Krajewski, and T.R. McNelley, Metall. Mater. Trans. A, 36 (2005), pp. 1249–1261.CrossRefGoogle Scholar
  28. 29.
    W.P. Green, M.A. Kulas, A. Niazi, K. Oh-ishi, E.M. Taleff, and P.E. Krajewski, Metall. Mater. Trans. A, 37 (2006), pp. 2727–2738.CrossRefGoogle Scholar
  29. 30.
    J.R. Bradley, Superplasticity and Superplastic Forming, ed. E.M. Taleff, P.A. Friedman, P.E. Krajewski, R.S. Mishra, and J.G. Schroth (Warrendale, PA: TMS, 2004), pp. 109–118.Google Scholar
  30. 31.
    P.E. Krajewski, L.G. Hector, Jr., N. Du, and A. Bower, Acta Materialia, 58 (2010), pp. 1074–1086.CrossRefGoogle Scholar
  31. 32.
    N. Du, A.F. Bower, P.E. Krajewski, and E.M. Taleff, Mater. Sci. and Eng. A, 494 (2008), pp. 86–81.CrossRefGoogle Scholar
  32. 33.
    D. Cipoletti, A. Bower Y. Qi, and P.E. Krajewski, Mater. Sci. and Eng. A, 504 (2009), pp. 175–182.CrossRefGoogle Scholar
  33. 34.
    N. Du, Y. Qi, P.E. Krajewski, and A.F. Bower, Metall. Mater. Trans. A, 42 (2011), pp. 651–659.CrossRefGoogle Scholar
  34. 35.
    F. Zhang and W.A. Curtin, Mater. Sci. and Eng., 16 (2008), pp. 1–18.CrossRefGoogle Scholar
  35. 36.
    S.J. Dillon, M. Tang, W.C. Carter, and M.P. Harmer, Acta Materialia, 55 (2007), pp. 6208–6218.CrossRefGoogle Scholar
  36. 37.
    N. Chetty, M. Weinert, T.S. Rahman, and J.W. Davenport, Phys. Rev. B, 52 (1995), pp. 6313–6326.CrossRefGoogle Scholar
  37. 38.
    B. Jelinek, J. Houze, S. Kim, M.F. Horstemeyer, M.I. Baskes, and S.G. Kim, Phys. Rev. B, 75 (2007), 1–9.CrossRefGoogle Scholar
  38. 39.
    Y. Mishin, W.J. Boettinger, J.A. Warren, and G.B. McFadden, Acta Materialia, 57 (2009), pp. 3771–3785.CrossRefGoogle Scholar
  39. 40.
    J.R. Davies, ASM Specialty Handbook: Aluminum and Aluminum Alloys (Materials Park, OH: ASM International, 1993), pp. 579–580.Google Scholar

Copyright information

© TMS 2011

Authors and Affiliations

  • P. E. Krajewski
    • 1
  • L. G. HectorJr.
    • 1
  • Y. Qi
    • 1
  • R. K. Mishra
    • 1
  • A. K. Sachdev
    • 1
  • A. F. Bower
    • 2
  • W. A. Curtin
    • 2
  1. 1.General Motors CompanyWarrenUSA
  2. 2.School of EngineeringBrown UniversityProvidenceUSA

Personalised recommendations