JOM

, 63:25 | Cite as

Magnetic behavior of CeO2-δ thin films doped with non-magnetic transition metals

Magnetic Materials and Devices Research Summary

Abstract

This paper presents the magnetic behavior of CeO2-δ films doped with two non-magnetic transition metal elements: copper and zinc. High quality films were grown on LaAlO3 (001) substrate using a pulsed laser deposition technique. Detailed structural characterization and magnetic property measurements were performed. Our results showed that Cu-doped CeO2-δ films exhibit room temperature ferromagnetism while Zn-doped CeO2-δ films are non-magnetic.

References

  1. 1.
    S. Das Sarma, American Scientist, 89 (2001), pp. 516–523.Google Scholar
  2. 2.
    S.A. Chambers, Materials Today, 4 (2002), pp. 34–39.CrossRefGoogle Scholar
  3. 3.
    I. Malajovich, J.J. Berry, N. Samarth, and D.D. Awschalom, Nature, 411 (2001), pp. 770–772.CrossRefGoogle Scholar
  4. 4.
    A. Tiwari, V. M. Bhosle, S. Ramachandran, N. Sudhakar, J. Narayan, S. Budak, and A. Gupta, Applied Physics Letters, 88 (2006), pp. 142511 1–3.CrossRefGoogle Scholar
  5. 5.
    S. Ramachandran, Ashutosh Tiwari, and J. Narayan, J. Electron. Mater., 33 (2004), p. 1298.CrossRefGoogle Scholar
  6. 6.
    M. Snure, D. Kumar, and A. Tiwari, JOM, 61(6) (2009), pp. 72–75.CrossRefGoogle Scholar
  7. 7.
    G. Schmidt, D. Ferrand, L.W. Molenkamp, A.T. Filip, and B.J. Van Wees, Physical Review B, 62 (2000), R4790–R4793.CrossRefGoogle Scholar
  8. 8.
    X. Hao, J.S. Moodera, and R. Meservey, Physical Review B, 42 (1990), pp. 8235–8243.CrossRefGoogle Scholar
  9. 9.
    R. Fiederling, M. Keim, G. Reuscher, W. Ossau, G. Schmidt, A. Waag, and L.W. Molenkamp, Nature, 402 (1999), pp. 787–790.CrossRefGoogle Scholar
  10. 10.
    J.G. Simmons, J. App. Phys., 34(9) (1963), p. 2581.CrossRefGoogle Scholar
  11. 11.
    J.S. Moodera, X. Hao, G.A. Gibson, and R. Meservey, Phys. Rev. Lett., 61(5) (1988), p. 637.CrossRefGoogle Scholar
  12. 12.
    Guo-Xing Miao, M. Müller, and J.S. Moodera, Phys. Rev. Lett., 102 (2009), p. 076601.CrossRefGoogle Scholar
  13. 13.
    A. Schmehl, V. Vaithyanhathan, and A. Herrnberger, Nature Mater., 6 (2007), pp. 882–888.CrossRefGoogle Scholar
  14. 14.
    A. Thurber, K.M. Reddy, and A. Punnoose, J. Appl. Phys., 101 (2007), p. 09N506.CrossRefGoogle Scholar
  15. 15.
    S.K. Sharma, M. Knobel, C.T. Meneses, S. Kumar, Y.J. Kim, B.H. Koo, C.G. Lee, D.K. Shukla, and R. Kumar, J. Korean Phys. Soc., 55 (2009), p. 1018.CrossRefGoogle Scholar
  16. 16.
    N.W. Ashcroft and N.D. Mermin, Solid State Physics (Fort Worth, TX: Harcourt College Publishers, 1975).Google Scholar
  17. 17.
    J.G. Jolley, G.G. Geesey, M.R. Haukins, R.B. Write, and P.L. Wichlacz, Appl. Surf. Sci., 37 (1989), p. 469.CrossRefGoogle Scholar
  18. 18.
    R.J. Bird and P.J. Swift, Electron Spectrosc. Relat. Phenom., 21 (1980), p. 227.CrossRefGoogle Scholar
  19. 19.
    J.F. Moulder, W.F. Stickle, P.E. Sobol, and K.D. Bomben, Handbook of X-ray Photoelectron Spectroscopy (Eden Prairie, MN: Perkin-Elmer, 1992).Google Scholar

Copyright information

© TMS 2011

Authors and Affiliations

  • Paul Slusser
    • 1
  • Dhananjay Kumar
    • 2
  • Ashutosh Tiwari
    • 1
  1. 1.Department of Materials Science and EngineeringUniversity of Utah, SLCUtahUSA
  2. 2.Department of Mechanical EngineeringNorth Carolina A & T GreensboroGreensboroUSA

Personalised recommendations