, 63:66 | Cite as

Characterization and modeling of heterogeneous deformation in commercial purity titanium

  • Y. Yang
  • L. Wang
  • C. Zambaldi
  • P. Eisenlohr
  • R. Barabash
  • W. Liu
  • M. R. Stoudt
  • M. A. Crimp
  • T. R. Bieler
Nanomaterials: Mechanical Behavior Research Summary


Heterogeneous deformation, including local dislocation shear activity and lattice rotation, was analyzed in microstructure patches of polycrystalline commercial purity titanium specimens using three different experimental methods. The measurements were compared with crystal plasticity finite element simulations for the same region that incorporate a local phenomenological hardening constitutive model. The dislocation activity was measured using techniques associated with atomic force microscopy, confocal microscopy, three-dimensional x-ray diffraction, and nano-indentation. The results indicate that a major challenge for model development is to effectively predict conditions where slip transfer occurs, and where geometrically necessary dislocations accumulate.


Atomic Force Microscopy Slip System Crystal Plasticity Critical Resolve Shear Stress Prism Slip 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    R.A. Lebensohn and C.N. Tome, Acta Metall. Mater., 41(9) (1993), pp. 2611–2624.CrossRefGoogle Scholar
  2. 2.
    Z. Yao and R.H. Wagoner, Acta Metall. Mater., 41(2) (1993), pp. 451–468.CrossRefGoogle Scholar
  3. 3.
    F. Delaire, J.L. Raphanel, and C. Rey, Acta Mater., 48(5) (2000), pp. 1075–1087.CrossRefGoogle Scholar
  4. 4.
    S. Zaefferer, Mater. Sci. Eng. A, 344 (2000), pp. 20–30.Google Scholar
  5. 5.
    F. Bridier, P. Villechaise, and J. Mendez, Acta Mater., 53 (2005), pp. 555–567.CrossRefGoogle Scholar
  6. 6.
    J.W. Christian and S. Mahajan, Prog. Mater. Sci., 39 (1995), pp. 1–157.CrossRefGoogle Scholar
  7. 7.
    F.P.E. Dunne, D. Rugg, and A. Walker, Int. J. Plasticity, 23 (2007), pp. 1061–1083.CrossRefGoogle Scholar
  8. 8.
    R. Becker and S. Panchanadeeswaran, Acta Metall. Mater., 43 (1995), pp. 2701–2719.CrossRefGoogle Scholar
  9. 9.
    D. Raabe, M. Sachtleber, Z. Zhao, F. Roters, and S. Zaefferer, Acta Mater., 49 (2001), pp. 3433–3441.CrossRefGoogle Scholar
  10. 10.
    S.R. Kalidindi, A. Bhattacharyya, and R.D. Doherty, Proc. R. Soc. Lond., 460A (2004), pp. 1935–1956.Google Scholar
  11. 11.
    F. Roters, Comput. Mater. Sci., 32 (2005), p. 509.CrossRefGoogle Scholar
  12. 12.
    F. Roters, P. Eisenlohr, L. Hantcherli, D.D. Tjahjanto, T.R. Bieler, and D. Raabe, Acta Mater., 58 (2010), p. 1152.CrossRefGoogle Scholar
  13. 13.
    L. Wang, R. Barabash, Y. Yang, T.R. Bieler, M.A. Crimp, P. Eisenlohr, W.J. Liu, and G.E. Ice, Metall. Mater. Trans. A, 42A (2011), pp. 626–635.CrossRefGoogle Scholar
  14. 14.
    Y. Yang, L. Wang, T.R. Bieler, P. Eisenlohr, and M.A. Crimp, Met. Mat. Trans., 42A (2011), pp. 636–644.CrossRefGoogle Scholar
  15. 15.
    B. Wagenknecht, D. Libiran, S. Poon, and K. Sztykiel, “In-Situ Four-Point Bending Apparatus for Scanning Electron Micro-scopes” (Senior Design Project, Mechanical Engineering, Michigan State University, Apr. 2008).Google Scholar
  16. 16.
    S.R. Kalidindi, C.A. Bronkhorst, and L. Anand, J. Mech. Phys. Solids, 40 (1992), pp. 537–569.CrossRefGoogle Scholar
  17. 17.
    S.R. Kalidindi and L. Anand, Metall. Trans. A, 24A (1993), pp. 989–992.Google Scholar
  18. 18.
    A.A. Salem, S.R. Kalidindi, and S.L. Semiatin, Acta Materialia, 53 (2005), pp. 3495–3502.CrossRefGoogle Scholar
  19. 19.
    C. Zambaldi and D. Raabe, Acta Mater., 58 (2010), p. 3516.CrossRefGoogle Scholar
  20. 20.
    C. Zambaldi, Y. Yang. T.R. Bieler, and D. Raabe, J. Mater. Res., (accepted for 2012 publication).Google Scholar
  21. 21.
    B.A. Simkin, B.C. Ng, T.R. Bieler, M.A. Crimp, and D.E. Mason, Intermetallics, 11 (2003), pp. 215–223.CrossRefGoogle Scholar
  22. 22.
    J. Nelder and R. Mead, Computer Journal, 7 (1965), p. 308.Google Scholar
  23. 23.
    W. Press, S. Teukolsky, W. Vetterling, and B. Flannery, Numerical Recipes C++ (Cambridge, U.K.: Cambridge University Press, 2007).Google Scholar
  24. 24.
    V. Vitek, A. Mrovec, R. Groger, J.L. Bassani, V. Racherla, and L. Yin, Mater. Sci. and Eng., A-387 (2004), pp. 138–142.CrossRefGoogle Scholar
  25. 25.
    M.A. Tschopp, D.E. Spearot, and D.L. McDowell, Dislocations in Solids, Vol. 14, ed. J.P. Hirth (Cambridge, MA: Elsevier Publishers, 2008), pp. 43–140.Google Scholar
  26. 26.
    L. Wang, Y. Yang, P. Eisenlohr, T.R. Bieler, M.A. Crimp, and D.E. Mason, Metall. Mater. Trans. A, 41 (2010), pp. 421–430.CrossRefGoogle Scholar
  27. 27.
    L. Wang, P. Eisenlohr, Y. Yang, T.R. Bieler, and M.A. Crimp, Scripta Materialia, 63 (2010), pp. 827–830.CrossRefGoogle Scholar
  28. 28.
    I.J. Beyerlein, L. Capolungo, P.E. Marshall, R.J. McCabe, and C.N. Tome, Philosophical Magazine, 90 (2010), pp. 2161–2190.CrossRefGoogle Scholar
  29. 29.
    J. Wang, R.G. Hoagland, J.P. Hirth, L. Capolungo, I.J. Beyerlein, and C.N. Tomé, Scripta Materialia, 61 (2009b), pp. 903–906.CrossRefGoogle Scholar
  30. 30.
    R. Barabash, G. Ice, B. Larson, G.M. Pharr, K.-S. Chung, and W. Yang, Appl. Phys. Letters, 79 (2001), pp. 749–751.CrossRefGoogle Scholar
  31. 31.
    W. Liu, G.E. Ice, B.C. Larsen, W. Yang, and J.Z. Tischler, Ultramicroscopy, 103 (2005), pp. 199–204.CrossRefGoogle Scholar
  32. 32.
    R.I. Barabash, G.E. Ice, M. Kumar, J. Ilavsky, and J. Belak, Int. J. Plast., 25 (2009), pp. 2081–2093.CrossRefGoogle Scholar
  33. 33.
    L. Wang, “Evolution of Deformation Twins and Dislocation Near Grain Boundaries in Commercial Purity Titanium” (Ph.D. Dissertation, Michigan State University, 2011).Google Scholar
  34. 34.
    A.W. Sleeswyk, Acta Metallurgica, 10 (1962), pp. 705–725.CrossRefGoogle Scholar
  35. 35.
    S. Mahajan and G.Y. Chin, Acta Metallurgica, 22 (1974), pp. 1113–1119.CrossRefGoogle Scholar
  36. 36.
    S. Vaidya and S. Mahajan, Acta Metallurgica, 28 (1980), pp. 1123–1131.CrossRefGoogle Scholar

Copyright information

© TMS 2011

Authors and Affiliations

  • Y. Yang
    • 1
  • L. Wang
    • 1
  • C. Zambaldi
    • 2
  • P. Eisenlohr
    • 2
  • R. Barabash
    • 3
  • W. Liu
    • 4
  • M. R. Stoudt
    • 5
  • M. A. Crimp
    • 1
  • T. R. Bieler
    • 1
  1. 1.Department of Chemical Engineering and Materials ScienceMichigan State UniversityEast LansingUSA
  2. 2.Max-Planck-Institut für EisenforschungDüsseldorfGermany
  3. 3.Oak Ridge National LaboratoryOak RidgeUSA
  4. 4.Advanced Photon Source at Argonne National LaboratoryArgonneUSA
  5. 5.National Institute of StandardsGaithersburgUSA

Personalised recommendations