Advertisement

JOM

, 63:35 | Cite as

Quantitative in-situ nanomechanical characterization of metallic nanowires

  • Yang Lu
  • Jun LouEmail author
Nanomechanics: Theory and Experiments Overview

Abstract

This paper reviews recent studies on in-situ quantitative mechanical characterization of metallic nanowires with diameters from a few nanometers to hundreds of nanometers, with particular emphasis placed on tensile loading geometry. Critical challenges and pitfalls in manipulating, clamping, and quantitatively testing nanowire specimens, with drastically different dimensions, are discussed. Two general experimental strategies are employed: microelectrochemical systems-based technology for testing of larger-diameter metal nanowires (D ∼ 30–300 nm), and insitu transmission electron microscopyatomic force microscopy platform for testing of ultrathin metallic nanowires (D < 20 nm). Size-dependent mechanical behaviors of gold nanowires, as well as the transition of different deformation mechanisms at corresponding length scales, are clearly revealed.

Keywords

Metallic Nanostructures Gold Nanowires Metallic Nanowires Nanometer Length Scale Nanowire Sample 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    W. Lu and C.M. Lieber, Nature Mater., 6 (2007), pp. 841–850.CrossRefGoogle Scholar
  2. 2.
    L. Cademartiri and G.A. Ozin, Adv. Mater., 21 (2009), pp. 1013–1020.CrossRefGoogle Scholar
  3. 3.
    C. Wang et al., J. Am. Chem. Soc., 130 (2008), pp. 8902–8903.CrossRefGoogle Scholar
  4. 4.
    E. Arzt, Acta Mater., 46 (1998), pp. 5611–5626.CrossRefGoogle Scholar
  5. 5.
    S.S. Brenner, J. Appl. Phys., 27 (1956), pp. 1484–1491.CrossRefGoogle Scholar
  6. 6.
    M.D. Uchic et al., Science, 305 (2004), pp. 986–989.CrossRefGoogle Scholar
  7. 7.
    M.D. Uchic, P.A. Shade, and D.M. Dimiduk, JOM, 61(3) (2009), pp. 36–41.CrossRefGoogle Scholar
  8. 8.
    D.S. Gianola and C. Eberl, JOM, 61(3) (2009), pp. 24–35.CrossRefGoogle Scholar
  9. 9.
    J.R. Greer, J.Y. Kim, and M.J. Burek, JOM, 61(12) (2009), pp. 19–25.CrossRefGoogle Scholar
  10. 10.
    T. Zhu et al., MRS Bulletin, 34 (2009), pp. 167–172.CrossRefGoogle Scholar
  11. 11.
    M. Legros, D.S. Gianola, and C. Motz, MRS Bulletin, 35 (2010), pp. 354–360.CrossRefGoogle Scholar
  12. 12.
    K.S. Kumar, H. Van Swygenhoven, and S. Suresh, Acta Mater., 51 (2003), pp. 5743–5774.CrossRefGoogle Scholar
  13. 13.
    L. Lu et al. Science, 304 (2004), pp. 422–426.CrossRefGoogle Scholar
  14. 14.
    J. Diao, K. Gall, and M.L. Dunn, Nat. Mater., 2 (2003), pp. 656–660.CrossRefGoogle Scholar
  15. 15.
    C.A. Volkert and E.T. Lilleodden, Philos. Mag., 86 (2006). pp. 5567–5579.CrossRefGoogle Scholar
  16. 16.
    T. Zhu et al., Phys. Rev. Lett., 100 (2008), p. 025502.CrossRefGoogle Scholar
  17. 17.
    J. Lou et al., J. Mater. Sci., 38 (2003), pp. 4129–4135.CrossRefGoogle Scholar
  18. 18.
    N.A. Fleck et al., Acta Metall. Mater., 42 (1994), pp. 475–487.CrossRefGoogle Scholar
  19. 19.
    J. Lou et al., Mater. Sci. and Eng. A, 441 (2006), pp. 299–307.CrossRefGoogle Scholar
  20. 20.
    J.S. Stolken and A.G. Evans, Acta Mater., 46 (1998), pp. 5109–5115.CrossRefGoogle Scholar
  21. 21.
    M.S. Sander and L.S. Tan, Adv. Funct. Mater., 13 (2003), pp. 393–397.CrossRefGoogle Scholar
  22. 22.
    M.S. Wang et al., Nano Research, 1 (2008), pp. 22–31.CrossRefGoogle Scholar
  23. 23.
    C.L. Hsin et al., Adv. Mater., 20 (2008), pp. 1–5.CrossRefGoogle Scholar
  24. 24.
    Z.W. Shan et al., Nature Mater., 7 (2008), pp. 115–119.CrossRefGoogle Scholar
  25. 25.
    B.L. Boyce et al., JOM, 62(4) (2010), pp. 62–63.CrossRefGoogle Scholar
  26. 26.
    Y. Ganesan et al., JMEMS, 19(3) (2010), pp. 675–682.Google Scholar
  27. 27.
    Y. Lu, “In Situ Quantitative MEchanical Characterization and Integration of One-Dimensional Metallic Nanostructures” (Ph.D. thesis, Rice University, 2010)Google Scholar
  28. 28.
    D. Hyman and M. Mehregany, IEEE Trans. on Components and Packaging Tech., 22 (1999), pp. 357–364.CrossRefGoogle Scholar
  29. 29.
    Y. Lu et al., Nature Nanotech., 5 (2010), pp. 218–224.CrossRefGoogle Scholar
  30. 30.
    H. Zheng et al., Nature Comm., 1(144) (2010), doi:10.1038/ncomms1149.Google Scholar
  31. 31.
    B. Wu, A. Heidelberg, and J.J. Boland, Nature Mater., 4 (2005), pp. 525–529.CrossRefGoogle Scholar
  32. 32.
    G. Richter et al., Nano Lett., 9(8) (2009), pp. 3048–3052.CrossRefGoogle Scholar
  33. 33.
    J.Y. Kim and J.R. Greer, Acta Mater., 57 (2009), pp. 5245–5253.CrossRefGoogle Scholar
  34. 34.
    D. Jang and J.R. Greer, Scripta Mater., 64 (2011), pp. 77–80.CrossRefGoogle Scholar
  35. 35.
    M.A. Haque, H.D. Espinosa, and H.J. Lee, MRS Bulletin, 35 (2010), pp. 375–381.CrossRefGoogle Scholar
  36. 36.
    Y. Lu, Y. Ganesan, and J. Lou, Exp. Mech., 50 (2010), pp. 47–54.CrossRefGoogle Scholar
  37. 37.
    Y. Ganesan et al., ACS Nano, 4(12) (2010), pp. 7637–7643.CrossRefGoogle Scholar
  38. 38.
    R. Agrawal, B. Peng, and H.D. Espinosa, Nano Lett., 9(12) (2009), pp. 4177–4183.CrossRefGoogle Scholar
  39. 39.
    B. Pant et al., Appl. Phys. Lett., 98 (2011), p. 053506CrossRefGoogle Scholar
  40. 40.
    Y. Lu et al., Nanotechnology, 22 (2011), p. 355702.CrossRefGoogle Scholar
  41. 41.
    H. Guo et al., Nature Mater., 6 (2007), pp. 735–739.CrossRefGoogle Scholar
  42. 42.
    N. Agrait, G. Rubio, and S. Vieira, Phys. Rev. Lett., 74 (1995), pp. 3995–3998.CrossRefGoogle Scholar
  43. 43.
    T. Kizuka, Phys. Rev. B, 57 (1998), pp. 11158–11163.CrossRefGoogle Scholar
  44. 44.
    D.M. Tang et al., PNAS, 107 (2010), pp. 9055–9059.CrossRefGoogle Scholar
  45. 45.
    T. Kizuka, Phys. Rev. B, 77 (2008), p. 155401.CrossRefGoogle Scholar
  46. 46.
    A. Nafari et al., JMEMS, 17 (2008), pp. 328–333.Google Scholar
  47. 47.
    Y. Lu et al., Adv. Funct. Mater. (2011), DOI: 10.1002/ adfm.201101224.Google Scholar
  48. 48.
    L. Hung and E.A. Carter, J. Phys. Chem. C, 115 (2011), pp. 6269–6276.CrossRefGoogle Scholar

Copyright information

© TMS 2011

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Department of Mechanical Engineering and Materials ScienceRice UniversityHoustonUSA

Personalised recommendations