, 63:73 | Cite as

Thermal conductivity of UO2 fuel: Predicting fuel performance from simulation

  • Simon R. PhillpotEmail author
  • Anter El-Azab
  • Aleksandr Chernatynskiy
  • James S. Tulenko
Advanced Fuel Performance: Modeling and Simulation Research Summary


Recent progress in understanding the thermal-transport properties of UO2 for fission reactors is reviewed from the perspective of computer simulations. A path to incorporating more accurate materials models into fuel performance codes is outlined. In particular, it is argued that a judiciously integrated program of atomic-level simulations and mesoscale simulations offers the possibility of both better predicting the thermal-transport properties of UO2 in light-water reactors and enabling the assessment of the thermal performances of novel fuel systems for which extensive experimental databases are not available.


Monte Carlo Phonon Scattering Thermal Transport Lattice Boltzmann Fuel System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    H. Kleykamp, J. Nucl. Mater., 131(2–3) (1985), pp. 221–246.CrossRefGoogle Scholar
  2. 2.
    H. Matzke and H. Blank, J. Nucl. Mater., 166(1–2) (1989), pp. 120–131.CrossRefGoogle Scholar
  3. 3.
    D. O’Boyle, F. Brown, and J. Sanecki, J. Nucl. Mater., 29(1) (1969), pp. 27–42.CrossRefGoogle Scholar
  4. 4.
    G. Berna, C. Beyer, K. Davis, and D.D. Lanning, FRAPCON-3: A Computer Code for the Calculation of Steady-State, Thermal Mechanical Behavior of Oxide Fuel Rods for High Burnup,, vol. 2 of NUREG/CR-6534. PNNL-11513 (Pacific Northwest National Laboratory, Richland, WA, 1997).Google Scholar
  5. 5.
    M. Bohn, FRACAS—A Subcode for the Analysis of Fuel Pellet-cladding Mechanical Interaction, TREENUREG-1028 (1977).Google Scholar
  6. 6.
    Method for Calculating the Fractional Release of the Volatile Fission Products from Oxide Fuel, ANSI/ANS-5.4-1982, American Nuclear Society (1982).Google Scholar
  7. 7.
    D.L. Hagrman, G.A. Reymann, and R.E. Mason, MATPRO Version 11 (Revision 2): A Handbook of Materials Properties for Use in the Analysis of Light Water Reactor Fuel Rod Behavior, vol. Rev. 2 of NUREG/CR-0497, TREE-1280 Rev. 2 (1981).Google Scholar
  8. 8.
    J.K. Fink, J. Nucl. Mater., 279(1) (2000), pp. 1–18.CrossRefGoogle Scholar
  9. 9.
    N. Ashcroft and D. Mermin, Solid State Physics (Philadelphia, PA: Saunders College Publishing, 1976).Google Scholar
  10. 10.
    D. Frenkel and B. Smit, Molecular Dynamics Simulations, 2nd ed. (New York: Academic Press, 2002).Google Scholar
  11. 11.
    P.K. Schelling, S.R. Phillpot, and P. Keblinski, Phys. Rev. B, 65 (2002), 144306.CrossRefGoogle Scholar
  12. 12.
    K. Govers, S. Lemehov, M. Hou, and M. Verwerft, J. Nucl. Mater., 366(1–2) (2007), pp. 161–177.CrossRefGoogle Scholar
  13. 13.
    G. Busker, “Solution and Migration of Impurity Ions in UO2, U3O8, and Y2O3” (Ph.D. thesis, Imperial College of Science, Technology and Medicine, 2002).Google Scholar
  14. 14.
    T. Watanabe, S.B. Sinnott, J.S. Tulenko, R.W. Grimes, P.K. Schelling, and S.R. Phillpot, J. Nucl. Mater., 375(3) (2008), pp. 388–396.CrossRefGoogle Scholar
  15. 15.
    T. Watanabe, S.G. Srivilliputhur, P.K. Schelling, J.S. Tulenko, S.B. Sinnott, and S.R. Phillpot, J. Am. Ceram. Soc., 92 (2009), pp. 850–856.CrossRefGoogle Scholar
  16. 16.
    S. Yamasaki, T. Arima, K. Idemitsu, and Y. Inagaki, Int. J. Thermophys., 28 (2007), pp. 661–673.CrossRefGoogle Scholar
  17. 17.
    P.G. Lucuta, H. Matzke, and R.A. Verrall, J. Nucl. Mater., 223(1) (1995), pp. 51–60.CrossRefGoogle Scholar
  18. 18.
    D.A. Vega, T. Watanabe, S.B. Sinnott, S.R. Phillpot, and J.S. Tulenko, Nucl. Technol., 165 (2009), pp. 308–312.Google Scholar
  19. 19.
    R. Berman, Thermal Conduction in Solids (Oxford, U.K.: Claredon Press, 1976).Google Scholar
  20. 20.
    J. Callaway and H.C. von Baeyer, Phys. Rev., 120 (1960), pp. 1149–1154.CrossRefGoogle Scholar
  21. 21.
    G. Chen, Nanoscale Energy Transport And Conversion: A Parallel Treatment of Electrons, Molecules, Phonons and Photons (New York: Oxford University Press, 2005).Google Scholar
  22. 22.
    P.G. Klemens, Proc. Phys. Soc. A, 68(12) (1955), p. 1113.CrossRefGoogle Scholar
  23. 23.
    P.G. Klemens, Phys. Rev., 119 (1960), pp. 507–509.CrossRefGoogle Scholar
  24. 24.
    P. Klemens, Solid State Physics, 7 (New York: Academic Press, Inc., 1958), p. 1.Google Scholar
  25. 25.
    K. Ohashi, J. Phys. Soc. Jpn., 24(3) (1968), pp. 437–445.CrossRefGoogle Scholar
  26. 26.
    C.T. Walker and R.O. Pohl, Phys. Rev., 131 (1963), pp. 1433–1442.CrossRefGoogle Scholar
  27. 27.
    P.C. Millett, D. Wolf, T. Desai, S. Rokkam, and A. El-Azab, J. Appl. Phys., 104(3) (2008), 033512.CrossRefGoogle Scholar
  28. 28.
    B. Schulz, High Temp.-High Press., 13 (1981), pp. 649–660.Google Scholar
  29. 29.
    P.C. Millett and M. Tonks, J. Nucl. Mater., 412(3) (2011), pp. 281–286.CrossRefGoogle Scholar
  30. 30.
    H.S. Yang, G. Bai, L.J. Thompson, and J.A. Eastman, Acta Mater., 50 (2002), pp. 2309–2317.CrossRefGoogle Scholar
  31. 31.
    H. Matzke and J. Spino, J. Nucl. Mater., 248 (1997), pp. 170–179.CrossRefGoogle Scholar
  32. 32.
    J. Noirot, I. Auburn, L. Desgranges, K. Hanifi, J. Lamontagne, B. Pasquet, C. Valot, P. Blanpain, and J. Cognon, Nucl. Eng. Technol., 41 (2009), pp. 155–162.Google Scholar
  33. 33.
    J. Noirot, L. Desgranges, and J. Lamontagne, J. Nucl. Mater., 372(2–3) (2008), pp. 318–339.CrossRefGoogle Scholar
  34. 34.
    I.L.F. Ray, H. Matzke, H.A. Thiele, and M. Kinoshita, J. Nucl. Mater., 245(2–3) (1997), pp. 115–123.CrossRefGoogle Scholar
  35. 35.
    D. Lacroix, K. Joulain, and D. Lemonnier, Phys. Rev. B, 72 (2005), 064305.CrossRefGoogle Scholar
  36. 36.
    S. Mazumder and A. Majumdar, J. Heat Transfer, 123(4) (2001), pp. 749–759.CrossRefGoogle Scholar
  37. 37.
    A. Mittal and S. Mazumder, J. Heat Transfer, 132(5) (2010), 052402.CrossRefGoogle Scholar
  38. 38.
    R. Escobar, B. Smith, and C. Amon, J. Electron. Packaging, 128(2) (2006), pp. 115–124.CrossRefGoogle Scholar
  39. 39.
    S. Narumanchi, J. Murthy, and C. Amon, Heat Mass Transfer, 42 (2006), pp. 478–491.CrossRefGoogle Scholar

Copyright information

© TMS 2011

Authors and Affiliations

  • Simon R. Phillpot
    • 1
    Email author
  • Anter El-Azab
    • 2
  • Aleksandr Chernatynskiy
    • 1
  • James S. Tulenko
    • 3
  1. 1.Department of Materials Science and EngineeringUniversity of FloridaGainesvilleUSA
  2. 2.Computational Science Department & Materials Science ProgramFlorida State UniversityTallahasseeUSA
  3. 3.Nuclear Engineering Program and Department of Materials Science and EngineeringUniversity of FloridaGainesvilleUSA

Personalised recommendations