Advertisement

JOM

, 63:59 | Cite as

Waterside corrosion in zirconium alloys

  • Arthur T. MottaEmail author
Advanced Fuel Performance: Modeling and Simulation Research Summary

Abstract

The influence of the alloy microstructure and microchemistry on uniform waterside corrosion of zirconium alloys is reviewed, with special attention to the various stages of corrosion, such as pre-transition, transition, and breakaway.

Keywords

Oxide Layer Corrosion Rate Tetragonal Phase Oxide Thickness Protective Oxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    C. Lemaignan and A. T. Motta, Materials Science and Technology, A Comprehensive Treatment, vol. 10B, ed. B.R.T. Frost (New York: Wiley-VCH, 1994), pp. 1–51.Google Scholar
  2. 2.
    R. Yang, O. Ozer, and H. Rosenbaum, “Current Challenges and Expectations of High Performance Fuel for the Millennium” (Paper presented at the Light Water Reactor Fuel Performance Meeting, Park City, Utah, ANS, 2000).Google Scholar
  3. 3.
    M. Blat, L. Legras, D. Noel, and H. Amanrich, Twelfth Int.l Symp. on Zr in the Nuclear Industry, STP 1354 (West Conshohocken, PA: ASTM, 2000), pp. 563–591.CrossRefGoogle Scholar
  4. 4.
    P. Bossis, D. Pecheur, K. Hanifi, J. Thomazet, and M. Blat, J. ASTM Int., 3 (2006) paper #JAI12404.Google Scholar
  5. 5.
    G. Zhou, G. Wikmark, L. Hallstadius, J. Wright, M. Dahlback, L.P. Brandes, S. Holcombe, U. Wetterholm, A. Lindquist, S. Valizadeh, Y. Long, and P. Blair, Proceedings of Top Fuel 2009 (Paris: American Nuclear Sociey, 2009), paper 2020.Google Scholar
  6. 6.
    B. Cox, J. Nuclear Materials, 336 (2005), pp. 331–368.CrossRefGoogle Scholar
  7. 7.
    “Corrosion of Zirconium Alloys in Nuclear Power Plants,” Doc. No IAEA-TECDOC-684 (Vienna, Austria: International Atomic Energy Agency, 1993).Google Scholar
  8. 8.
    “Waterside Corrosion of Zirconium Alloys in Nuclear Power Plants,” Doc. No IAEA-TECDOC-996 (Vienna, Austria: International Atomic Energy Agency, 1998).Google Scholar
  9. 9.
    E. Hillner, Proc. 3rd Int. Symp. on Zr in the Nuclear Industry, ASTM STP 633 (1977), pp. 211–235.Google Scholar
  10. 10.
    S. Kass, Proc. Symp. on Corrosion of Zirconium Alloys, ASTM, STP 368 (La Grange Park, IL: American Nuclear Society, 1964), pp. 3–27.Google Scholar
  11. 11.
    G.P. Sabol, G.R. Kilp, M.G. Balfour, and E. Roberts, Eighth Int. Symp. on Zirconium in the Nuclear Industry, ASTM STP 1023 (West Conshohocken, PA:, ASTM, 1989), pp. 227–244.CrossRefGoogle Scholar
  12. 12.
    G.L. Garner and J.P. Mardon, Nuclear Engineering Int., 47 (2002), pp. 36–37.Google Scholar
  13. 13.
    J.P. Mardon, D. Charquet, and J. Senevat, 12th Int. Symp. on Zr in the Nuclear Industry, ASTM STP 1354 (West Conshohocken, PA:, ASTM, 2000), pp. 505–524.Google Scholar
  14. 14.
    F. Garzarolli and H. Stehle, IAEA Symp. on Improvements in Water Reactor Fuel Technology and Utilization, SM 288/24 (Vienna, Austria,; IAEA, 1986), pp. 387–407.Google Scholar
  15. 15.
    N. Ramasubramanian, P. Billot, and S. Yagnik, “Hydrogen Evolution and Pickup during the Corrosion of Zirconium Alloys: A Critical Evaluation of the Solid State and Porous Oxide Electrochemistry,” ASTM Special Technical Publication 1423 (West Conshohocken, PA: ASTM, 2002), pp. 222–242.Google Scholar
  16. 16.
    D.L. Douglass, The Metallurgy of Zirconium (Vienna, Austria: International Atomic Energy Agency Supplement, 1971).Google Scholar
  17. 17.
    J.B. Bai, C. Prioul, and D. Francois, Metall. Mater. Trans. A, 25A (1994), pp. 1185–1197.CrossRefGoogle Scholar
  18. 18.
    C.E. Ells, J. Nuclear Mater., 28 (1968), pp. 129–151.CrossRefGoogle Scholar
  19. 19.
    R.C. Garvie, J. Phys. Chem., 69 (1965), pp. 1238–1243.CrossRefGoogle Scholar
  20. 20.
    R.C. Garvie, J. Phys. Chem., 82 (1978), pp. 218–224.CrossRefGoogle Scholar
  21. 21.
    J. Godlewski, 10th Int. Symp. on Zr in the Nuclear Industry, ASTM STP 1245 (West Conshohocken, PA: ASTM, 1994), pp. 663–686.CrossRefGoogle Scholar
  22. 22.
    A. Yilmazbayhan, “Microstructural Basis of Uniform Corrosion in Zr Alloys” (Ph.D Thesis in Nuclear Engineering, Penn State University, 2004).Google Scholar
  23. 23.
    A. Yilmazbayhan, A.T. Motta, R.J. Comstock, G.P. Sabol, B. Lai, and Z. Cai, J. Nuclear Materials, 324 (2004), pp. 6–22.CrossRefGoogle Scholar
  24. 24.
    A.T. Motta, M.J. Gomes-da-Silva, A. Yilmazbayhan, R.J. Comstock, Z. Cai, and B. Lai, J. ASTM International, 5 (2008), paper ID# JAI10125.Google Scholar
  25. 25.
    A.T. Motta, A. Yilmazbayhan, R.J. Comstock, J. Partezana, G.P. Sabol, Z. Cai, and B. Lai, J. ASTM International, 2 (2005), Paper # JAI 12375.Google Scholar
  26. 26.
    A. Yilmazbayhan, A.T. Motta, H.G. Kim, Y.H. Jeong, J.Y. Park, and R. Comstock, Environmental Degradation of Materials in Nuclear Power Systems XII, ed. L. Nelson, P.J. King and T.R. Allen (Warrendale, PA: TMS, 2007), pp. 201–210.Google Scholar
  27. 27.
    D. Pecheur, J. Godlewski, P. Billot, and J. Thomazet, 11th Int. Symp. on Zr in the Nuclear Industry, ASTM STP 1295 (West Conshohocken, PA: ASTM, 1995), pp. 94–113.Google Scholar
  28. 28.
    P. Barberis and A. Frichet, J. Nuclear Materials, 273 (1999), pp. 182–191.CrossRefGoogle Scholar
  29. 29.
    B. Cox, J. Corrosion Science and Eng., 6 (2003), paper 14.Google Scholar
  30. 30.
    B. Cox and J.P. Pemsler, J. Nuclear Mater., 28 (1968), pp. 73–78.CrossRefGoogle Scholar
  31. 31.
    M. Tupin, M. Pijolat, F. Valdivieso, M. Soustelle, A. Frichet, and P. Barberis, J. Nuclear Mater., 317 (2003), pp. 130–144.CrossRefGoogle Scholar
  32. 32.
    A.T.J. Fromhold, Theory of Metal Oxidation, vol. 9 (New York: North-Holland, 1976).Google Scholar
  33. 33.
    G.P. Sabol and S.B. Dalgaard, J. Electrochemical Soc., 122 (1975), p. 316.CrossRefGoogle Scholar
  34. 34.
    A. Yilmazbayhan, E. Breval, A. Motta, and R. Comstock, J. Nuclear Mater., 349 (2006), pp. 265–281.CrossRefGoogle Scholar
  35. 35.
    P. Bossis, G. Lelievre, P. Barberis, X. Iltis, and F. Lefebvre, Twelfth Int. Symp. on Zirconium in the Nuclear Industry, ASTM STP 1354 (West Conshohocken, PA: ASTM, 2000), p. 918.CrossRefGoogle Scholar
  36. 36.
    P. Bossis, F. Lefebvre, P. Barberis, and A. Galerie, Materials Science Forum, 369–372 (2001), pp. 255–262.CrossRefGoogle Scholar
  37. 37.
    B. Cox, J. Nuclear Mater., 29 (1969), p. 50.CrossRefGoogle Scholar
  38. 38.
    D.H. Bradhurst and P.M. Heuer, J. Nuclear Mater., 37 (1970), p. 35.CrossRefGoogle Scholar
  39. 39.
    B. Cox, J. Nuclear Mater., 27 (1968), pp. 1–11.CrossRefGoogle Scholar
  40. 40.
    N. Ni, S. Lozano-Perez, M.L. Jenkins, C. English, G.D.W. Smith, J.M. Sykes, and C.R.M. Grovenor, Scripta Materialia, 62 (2010), pp. 564–567.CrossRefGoogle Scholar
  41. 41.
    B. Cox, J. Nuclear Mater., 148 (1987), pp. 332–343.CrossRefGoogle Scholar
  42. 42.
    B. Cox and Y. Yamaguchi, J. Nuclear Mater., 210 (1994), pp. 303–317.CrossRefGoogle Scholar
  43. 43.
    J.L. Bechade, R. Brenner, P. Goudeau, and M. Gailhanou, Revue de Metallurgie, Cahiers D’Informations Techniques, 100 (2003), pp. 1151–1156.Google Scholar
  44. 44.
    J.-L. Béchade, R. Brenner, P. Goudeau, and M. Gailhanou, Mater. Sci. Forum, 404–407 (2002), pp. 803–808.CrossRefGoogle Scholar
  45. 45.
    N. Petigny, P. Barberis, C. Lemaignan, C. Valot, and M. Lallemant, J. Nuclear Mater., 280 (2000), pp. 318–330.CrossRefGoogle Scholar
  46. 46.
    J. Godlewski, P. Bouvier, G. Lucazeau, and L. Fayette, “Stress Distribution Measured by Raman Spectroscopy in Zirconia Films Formed by Oxidation of Zrbased Alloys,” Twelfth Int. Symp. Zr Nuclear Ind., ASTM STP 1354 (West Conshohocken, PA: ASTM, 2000), pp. 877–900.CrossRefGoogle Scholar
  47. 47.
    P. Goudeau, D. Faurie, B. Girault, P.O. Renault, E. Le Bourhis, P. Villain, F. Badawi, O. Castelnau, R. Brenner, J.L. Bechade, G. Geandier, and N. Tamura, Mater. Sci. Forum, 524–525 (2006), pp. 735–740.CrossRefGoogle Scholar
  48. 48.
    J. Godlewski, J.P. Gros, M. Lambertin, J.F. Wadier, and H. Weidinger, 9th Int. Symp. on Zr in the Nuclear Industry, ASTM STP 1132 (West Conshohocken, PA: ASTM, 1991), pp. 416–436.CrossRefGoogle Scholar
  49. 49.
    H. Li, H.M. Glavicic, and J.A. Spuznar, Mater. Sci. and Eng., A366 (2004), pp. 164–174.CrossRefGoogle Scholar
  50. 50.
    A. Motta, A. Yilmazbayhan, M. Gomes da Silva, R.J. Comstock, G. Was, J. Busby, E. Gartner, Q. Peng, Y.H. Jeong, and J.Y. Park, J. Nuclear Mater., 371 (2007), pp. 61–75.CrossRefGoogle Scholar
  51. 51.
    A.T. Motta and Y.H. Jeong, “Advanced Corrosion Resistant Zr Alloys for use in High Burnup and generation IV Systems,” I-NERI Research Project # 2003-020-K (ROK-USA, 2003–2006), doi 10.2172/895014.Google Scholar

Copyright information

© TMS 2011

Authors and Affiliations

  1. 1.Department of Mechanical and Nuclear EngineeringPennsylvania State UniversityUniversity ParkUSA

Personalised recommendations