Advertisement

JOM

, Volume 63, Issue 7, pp 29–34 | Cite as

An integrated computational tool for precipitation simulation

  • W. Cao
  • F. Zhang
  • S. -L. Chen
  • C. Zhang
  • Y. A. Chang
Modeling Solidification and Heat Treatment Research Summary

Abstract

Computer aided materials design is of increasing interest because the conventional approach solely relying on experimentation is no longer viable within the constraint of available resources. Modeling of microstructure and mechanical properties during precipitation plays a critical role in understanding the behavior of materials and thus accelerating the development of materials. Nevertheless, an integrated computational tool coupling reliable thermodynamic calculation, kinetic simulation, and property prediction of multi-component systems for industrial applications is rarely available. In this regard, we are developing a software package, PanPrecipitation, under the framework of integrated computational materials engineering to simulate precipitation kinetics. It is seamlessly integrated with the thermodynamic calculation engine, PanEngine, to obtain accurate thermodynamic properties and atomic mobility data necessary for precipitation simulation.

Keywords

Particle Number Density Precipitation Simulation Calphad Method Integrate Computational Material Engineering Phase Equilibrium Information 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Cao et al., Calphad, 33(2) (2009), pp. 328–342.CrossRefGoogle Scholar
  2. 2.
    W. Cao et al., “Precipitation Modeling of Multi-Component Alloys,” submitted to Acta Materialia (2011).Google Scholar
  3. 3.
    S.L. Chen et al., Calphad-Computer Coupling of Phase Diagrams and Thermochemistry, 26(2) (2002), pp. 175–188.Google Scholar
  4. 4.
    M. Avrami, The Journal of Chemical Physics, 7(12) (1939), pp. 1103–1112.CrossRefGoogle Scholar
  5. 5.
    M. Avrami, The Journal of Chemical Physics, 8(2) (1940), pp. 212–224.CrossRefGoogle Scholar
  6. 6.
    M. Avrami, The Journal of Chemical Physics, 9(2) (1941), pp. 177–184.CrossRefGoogle Scholar
  7. 7.
    W.A. Johnson and R.F. Mehl, Trans. Am. Inst. Min. Metall. Eng., 135 (1939), pp. 416–458.Google Scholar
  8. 8.
    A.N. Kolmogorov, Izvestia Academy of Science, SSSR, Ser. Math, 3 (1937), pp. 355–360.Google Scholar
  9. 9.
    J.S. Langer and A.J. Schwartz, Physical Review A, 21(3) (1980), pp. 948–958.CrossRefGoogle Scholar
  10. 10.
    R. Kampmann and R. Wagner, Decomposition of Alloys: The Early stages, ed. P. Haasen et al. (Oxford: Pergamon Press, 1984), pp. 91–103.Google Scholar
  11. 11.
    A. Deschamps and Y. Brechet, Acta Materialia, 47(1) (1998), pp. 293–305.CrossRefGoogle Scholar
  12. 12.
    V. Gerold, Dislocations in Solids (Amsterdam: North Holland, 1979).Google Scholar
  13. 13.
    O.R. Myhr, Ø. Grong, and S.J. Andersen, Acta Materialia, 49(1) (2001), pp. 65–75.CrossRefGoogle Scholar
  14. 14.
    J. Friedel, Dislocations (Oxford: Pergamon, 1964).Google Scholar
  15. 15.
    L. Kaufman and H. Bernstein, Computer Calculation of the Phase Diagrams with Special Reference to Refractory Materials (New York: Academic Press, 1970).Google Scholar
  16. 16.
    Y.A. Chang et al., Progress in Materials Science, 49(3–4) (2004), pp. 313–345.CrossRefGoogle Scholar
  17. 17.
    Ø. Grong, Metallurgical Modelling of Welding, 2nd ed. (London: The Institute of Materials, 1997).Google Scholar
  18. 18.
    K.S. Wu et al., Superalloys 2008, ed. Roger Reed et al. (Warrendale, PA: TMS, 2008), pp. 923–940.Google Scholar
  19. 19.
    J.D. Robson, Materials Science and Technology, 20 (2004), pp. 441–448.CrossRefGoogle Scholar
  20. 20.
    I.M. Lifshitz and V.V. Slyozov, J. Phys. Chem. Solids, 19 (1961), p. 35.CrossRefGoogle Scholar
  21. 21.
    C. Wagner, Z. Elektrochem., 65 (1961), p. 581.Google Scholar
  22. 22.
    X. Xie et al., Superalloys 718, 625, 706 and Derivatives, ed. E.A. Loria (Warrendale, PA: TMS, 2005), pp. 193–202.Google Scholar
  23. 23.
    A. Baldan, J. Materials Science, 37 (2002), pp. 2171–2202.CrossRefGoogle Scholar
  24. 24.
    C.K. Sudbrack, “Decomposition Behavior in Model Ni-Al-Cr-X Superalloys: Temporal Evolution and Compositional Pathways on a Nanoscale” (Ph.D Thesis, Department of Materials Science & Engineering. 2004, Northwestern University: Evanston, IL).Google Scholar
  25. 25.
    A. Oradei-Basile and J.F. Radavich, Superalloys 718, 625 and Various Derivatives, ed. E.A. Loria (Warrendale, PA: TMS, 1991), pp, 325–336.Google Scholar
  26. 26.
    W.F. Miao and D.E. Laughlin, Scripta Materialia, 40(7) (1999, pp. 873–878.CrossRefGoogle Scholar
  27. 27.
    S.J. Andersen et al., Acta Materialia, 46(9) (1998), pp. 3283–3298.CrossRefGoogle Scholar
  28. 28.
    W.A. Anderson, Precipitation from Solid Solution (Metals Park, OH: American Society for Metals, 1959).Google Scholar
  29. 29.
    J. Guo et al., “Prediction of Microstructure and Mechanical Properties in Aluminum Castings after Heat Treatment” (Paper presented at the TMS 2010 Annual Meeting & Exhibition, Seattle, WA, February 14–18, 2010).Google Scholar

Copyright information

© TMS 2011

Authors and Affiliations

  • W. Cao
    • 1
  • F. Zhang
    • 1
  • S. -L. Chen
    • 1
  • C. Zhang
    • 1
  • Y. A. Chang
    • 2
  1. 1.CompuTherm LLCMadisonUSA
  2. 2.Department of Materials Science and EngineeringUniversity of WisconsinMadisonUSA

Personalised recommendations