, Volume 63, Issue 6, pp 70–76 | Cite as

Application of carbon nanostructures—Energy to electronics

  • Indranil Lahiri
  • Santanu Das
  • Chiwon Kang
  • Wonbong Choi
Surface Engineering Research Summary


A wide variety of carbon nanostructures, from zero-dimensional fullerene through one-dimensional carbon nanotube to two-dimensional graphene, have attracted attention of scientific community worldwide for their exciting properties. Carbon-based nanomaterials have found applications in a vast field—electronics, sensors, biotechnology, energy, structural, etc. We have concentrated our effort in developing new engineering nanomaterials (graphene, carbon nanotubes) and their device applications in the field of energy generation and storage, nanoelectronics, and bio-electronic sensors. This article aims to capture those recent research efforts in synthesis and applications of carbonbased nanomaterials.


Current Collector Reversible Capacity Thermal Chemical Vapor Deposition Emission Device Chemical Vapor Deposition Graphene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Choi, I. Lahiri, R. Seelaboyna, and Y. Kang, Critical Reviews in Solid State and Materials Sciences, 35 (2010), pp. 52–71.CrossRefGoogle Scholar
  2. 2.
    V.P. Verma, S. Das, I. Lahiri, and W. Choi, Appl. Phys. Lett., 96 (2010), p. 203108.CrossRefGoogle Scholar
  3. 3.
    I. Lahiri, V.P. Verma, and W. Choi, Carbon, 49 (2010), pp. 1614–1619.CrossRefGoogle Scholar
  4. 4.
    W. Choi, D. Kim, Y. Choi, and J. Huang, JOM, 59(3) (2007), pp. 44–49.CrossRefGoogle Scholar
  5. 5.
    J. Huang, D.H. Kim, R. Seelaboyina, B.K. Rao, D. Wang, M. Park, and W. Choi, Diamond Related Mater., 16 (2007), pp. 1524–1529.CrossRefGoogle Scholar
  6. 6.
    Y. Choi and W. Choi, Carbon, 43 (2005), pp. 2737–2741.CrossRefGoogle Scholar
  7. 7.
    D.-H. Kim, J. Huang, H.-K. Shin, S. Roy, and W. Choi, Nano Lett., 6(12) (2006), pp. 2821–2825.CrossRefGoogle Scholar
  8. 8.
    D.-H. Kim, J. Huang, B.K. Rao, and W. Choi, J. Appl. Phys., 99 (2006), p. 056106.CrossRefGoogle Scholar
  9. 9.
    H. Vedala, J. Huang, X.Y. Zhou, G. Kim, S. Roy, and W.B. Choi, Appl. Surf. Sci., 252(22) (2006), pp. 7987–7992.CrossRefGoogle Scholar
  10. 10.
    D.-H. Kim, J. Huang, B.K. Rao, and W. Choi, IEEE Trans. Nanotech., 5 (2006), pp. 731–736.CrossRefGoogle Scholar
  11. 11.
    J. Huang and W. Choi, Nanotechnology, 19 (2008), p. 505601.CrossRefGoogle Scholar
  12. 12.
    J. Huang, B. Wang, I. Lahiri, A.K. Gupta, P.C. Eklund, and W. Choi, Adv. Func. Mater., 20 (2010), pp. 4388–4393.CrossRefGoogle Scholar
  13. 13.
    B. Wang, J. Huang, P. Eklund, and W. Choi, Phys. Rev. B, 81 (2010), p. 115422.CrossRefGoogle Scholar
  14. 14.
    V.P. Verma, S. Das, S. Hwang, H. Choi, M. Jeon, and W. Choi, Mater. Sci. Eng. B, 171(1–3) (2010), pp. 45–49.CrossRefGoogle Scholar
  15. 15.
    V.P. Verma, D.-H. Kim, H. Jeon, M. Jeon, and W. Choi, Thin Solid Films, 516 (2008), pp. 8736–8739.CrossRefGoogle Scholar
  16. 16.
    V.P. Verma, H. Jeon, S. Hwang, M. Jeon, and W. Choi, IEEE Trans. Nano., 7 (2008), pp. 782–786.CrossRefGoogle Scholar
  17. 17.
    R. Seelaboyina, J. Huang, J. Park, D.H. Kang, and W.B. Choi, Nanotechnology, 17 (2006), pp. 4840–4844.CrossRefGoogle Scholar
  18. 18.
    I. Lahiri, R. Seelaboyina, J.Y. Hwang, R. Banerjee, and W. Choi, Carbon, 48 (2010), pp. 1531–1538.CrossRefGoogle Scholar
  19. 19.
    I. Lahiri, S.W. Oh, J.Y. Hwang, S. Cho, Y.K. Sun, R. Banerjee, and W. Choi, ACS Nano, 4(6) (2010), pp. 3440–3446.CrossRefGoogle Scholar
  20. 20.
    I. Lahiri, R. Seelaboyina, and W.B. Choi, in Nanotubes and Related Nanostructures-2009, Volume 1204, ed. Yoke Khin Yap (Warrendale, PA: MRS, 2010), pp. 1204-K18–21.Google Scholar
  21. 21.
    I. Lahiri, D. Lahiri, S. Jin, A. Agarwal, and W. Choi, ACS Nano, 5(2) (2011), pp. 780–787.CrossRefGoogle Scholar
  22. 22.
    S. Hwang, H. Vedala, T. Kim, H. Choi, W. Choi, and M. Jeon, J. Electrochem. Soc., 157(4) (2010), pp. K67–K70.CrossRefGoogle Scholar
  23. 23.
    C.-Z. Li, W. Choi, and C.-H. Chuang, Electrochimica Acta, 54 (2008), pp. 821–828.CrossRefGoogle Scholar
  24. 24.
    S. Hwang, J. Moon, S. Lee, D.H. Kim, D. Lee, W. Choi, and M. Jeon, Electronics Lett., 43(25) (2007), pp. 1–2.CrossRefGoogle Scholar
  25. 25.
    W. Choi and R. Seelaboyina, Recent Patent in Nanotech., 1 (2007), pp. 238–344.CrossRefGoogle Scholar
  26. 26.
    R. Seelaboyina, J. Huang, and W.B. Choi, Appl. Phys. Lett., 88 (2006), p. 194104.CrossRefGoogle Scholar
  27. 27.
    R. Seelaboyina, S. Bodepalli, K. Noh, M. Jeon, and W. Choi, Nanotechnology, 19 (2008), p. 065605.CrossRefGoogle Scholar
  28. 28.
    R. Seelaboyina, I. Lahiri, and W. Choi, Nanotechnology, 21 (2010), p. 1452206.CrossRefGoogle Scholar
  29. 29.
    S. Roy, H. Vedala, V. Prasad, and W. Choi, Nanotechnology, 17 (2006), p. S14–S18.CrossRefGoogle Scholar
  30. 30.
    S. Roy, H. Vedala, A. Roy, D. Kim, M. Doud, K. Mathee, H. Shin, N. Shimamoto, V. Prasad, and W. Choi, Nano Lett., 8 (2008), pp. 26–30.CrossRefGoogle Scholar
  31. 31.
    H. Vedala, S. Roy, M. Doud, K. Mathee, and W. Choi, Nanotechnology, 19 (2008), p. 265704.CrossRefGoogle Scholar

Copyright information

© TMS 2011

Authors and Affiliations

  • Indranil Lahiri
    • 1
  • Santanu Das
    • 1
  • Chiwon Kang
    • 1
  • Wonbong Choi
    • 1
  1. 1.Nanomaterials and Device Lab, Department of Mechanical and Materials EngineeringFlorida International UniversityMiamiUSA

Personalised recommendations