JOM

, Volume 63, Issue 4, pp 93–98

Calcium phosphate ceramics in drug delivery

  • Susmita Bose
  • Solaiman Tarafder
  • Joe Edgington
  • Amit Bandyopadhyay
Biomaterials for Regenerative Medicine Overview

Abstract

Calcium phosphate (CaP) particulates, cements and scaffolds have attracted significant interest as drug delivery vehicles. CaP systems, including both hydroxyapaptite and tricalcium phosphates, possess variable stoichiometry, functionality and dissolution properties which make them suitable for cellular delivery. Their chemical similarity to bone and thus biocompatibility, as well as variable surface charge density contribute to their controlled release properties. Among specific research areas, nanoparticle size, morphology, surface area due to porosity, and chemistry controlled release kinetics are the most active. This article discusses CaP systems in their particulate, cements, and scaffold forms for drug, protein, and growth factor delivery toward orthopedic and dental applications.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E.I. Shishatskaya, O.N. Voinova, A.V. Goreva, O.A. Mogilnaya, and T.G. Volova, J. Mater. Sci: Mater. Med., 19 (2008), pp. 2493–2502.CrossRefGoogle Scholar
  2. 2.
    J.A. Hunt and M.S. Shoichet, Curr. Opin. Solid State Mater. Sci., 6 (2002), p. 281.CrossRefGoogle Scholar
  3. 3.
    M. Ye, S. Kim, and K. Park, J. Controlled Release, 146 (2010), pp. 241–260.CrossRefGoogle Scholar
  4. 4.
    P. Malafaya, Curr. Opin. Solid State Mater. Sci., 6 (2002), pp. 283–295.CrossRefGoogle Scholar
  5. 5.
    C. Tourné-Péteilh, D.A. Lerner, C. Charnay, L. Nicole, S. Bégu, and J. Devoisselle, J. Chem. Phys. Chem., 4 (2003), pp. 281–286.Google Scholar
  6. 6.
    E. Verron, I. Khairoun, J. Guicheux, and J. Bouler, Drug Discovery Today, 15 (2010), pp. 547–552.CrossRefGoogle Scholar
  7. 7.
    Michael A. Rauschmann, Thomas A. Wichelhaus, Volker Stirnal, Elvira Dingeldein, Ludwig Zichner, Reinhard Schnettler, and Volker Alt, Biomaterials, 26(15), (2005), pp. 2677–2684.CrossRefGoogle Scholar
  8. 8.
    Y. Ueno, H. Futagawa, Y. Takagi, A. Ueno, and Y. Mizushima, J. Controlled Release, 103(1) (2005), pp. 93–98.CrossRefGoogle Scholar
  9. 9.
    S.S. Banerjee, S. Tarafder, N.M. Davies, A. Bandyopadhyay, and S. Bose, Acta Biomater., 6 (2010), pp. 4167–4174.CrossRefGoogle Scholar
  10. 10.
    A. Bandyopadhyay, S. Bernard, W. Xue, and S. Bose, J. Amer. Cer. Soc., 89 (2006), pp. 2675–2688.CrossRefGoogle Scholar
  11. 11.
    D.S. Metsger, M.R. Rieger, and D.W. Foreman, J. Mater. Sci.: Mater. Med., 10 (1999), pp. 9–17.CrossRefGoogle Scholar
  12. 12.
    P. Sibilla, A. Sereni, G. Aguiari, M. Banzi, E. Manzati, C. Mischiati, L. Trombelli, and L. del Senno, J. Dental Res., 85 (2006), pp. 354–358.CrossRefGoogle Scholar
  13. 13.
    B. Palazzo, M. Iafisco, M. Laforgia, N. Margiotta, G. Natile, C. Bianchi, D. Walsh, S. Mann, and N. Roveri, Adv. Funct. Mater., 17 (2007), pp. 2180–2188.CrossRefGoogle Scholar
  14. 14.
    S. Dasgupta, S.S. Banerjee, A. Bandyopadhyay, and S. Bose, Langmuir, 26 (2010), pp. 4958–4964.CrossRefGoogle Scholar
  15. 15.
    F. Caruso, Adv. Mater., 13 (2001), pp. 11–22.CrossRefGoogle Scholar
  16. 16.
    F. Ye, H. Guo, H. Zhang, and X. He, Acta Biomater., 6 (2010), pp. 2212–2218.CrossRefGoogle Scholar
  17. 17.
    S. Dasgupta, A. Bandyopadhyay, and S. Bose, Acta Biomater., 5 (2009), pp. 3112–3121.CrossRefGoogle Scholar
  18. 18.
    W. Xue, A. Bandyopadhyay, and S. Bose, Acta Biomater., 5 (2009), pp. 1686–1696.CrossRefGoogle Scholar
  19. 19.
    S. Bose and S.K. Saha, Chem. Mater., 15 (2003), pp. 4464–4469.CrossRefGoogle Scholar
  20. 20.
    H.C. Shum, A. Bandyopadhyay, S. Bose, and D.A. Weitz, Chem. Mater., 21 (2009), pp. 5548–5555.CrossRefGoogle Scholar
  21. 21.
    M. Ravelingien, N. Smets, S. Mullens, J. Luyten, C. Vervaet, and J.P. Remon, IFMBE Proceed., 22 (2009), pp. 2269–2272.CrossRefGoogle Scholar
  22. 22.
    S.K. Nandi, P. Mukherjee, S. Roy, B. Kundu, D.K. De, and D. Basu, Mater. Sci. Eng.: C, 29 (2009), pp. 2478–2485.CrossRefGoogle Scholar
  23. 23.
    S.S. Banerjee, M. Roy, and S. Bose, Adv. Eng. Mater., 13(1–2) (2011), pp. B10–B17.CrossRefGoogle Scholar
  24. 24.
    T. Liu, S. Chen, D. Liu, and S. Liou, J. Control Release, 107 (2005), pp. 112–121.CrossRefGoogle Scholar
  25. 25.
    M. Bohner, J. Mater. Chem., 17 (2007), p. 3980.CrossRefGoogle Scholar
  26. 26.
    M. Bohner, T.J. Brunner, and W.J. Stark, J. Mater. Chem., 18(46) (2008), pp. 5669–5675.CrossRefGoogle Scholar
  27. 27.
    T.J. Brunner, R.N. Grass, M. Bohner, and W.J. Stark, J. Mater. Chem., 17 (2007), p. 4072.CrossRefGoogle Scholar
  28. 28.
    E. Fernandez, M. Boltong, M. Ginebra, F. Driessens, O. Bermudez, J. Planell, J. Mater. Sci. Lett., 15 (1996), pp. 1004–1005.CrossRefGoogle Scholar
  29. 29.
    M. Ginebra, F. Driessens, J. Planell, Biomaterials, 25 (2004), pp. 3453–3462.CrossRefGoogle Scholar
  30. 30.
    M.P. Ginebra, M.G. Boltong, E. Fernandez, J.A. Planell, and F.C.M. Driessens, J. Mater. Sci.: Mater. Med., 6 (1995), pp. 612–616.CrossRefGoogle Scholar
  31. 31.
    T. Yu, J. Ye, C. Gao, L. Yu, and Y. Wang, J. Amer. Cer. Soc., 93 (2010), pp. 1241–1244.Google Scholar
  32. 32.
    H.P. Stallmann, C. Faber, A.L. Bronckers, N. Amerongen, V. Arie, and P.I. Wuisman, BMC Musculoskeletal Disorders, 7(1) (2006), p. 18.CrossRefGoogle Scholar
  33. 33.
    S. Hesaraki and R. Nemati, J. Biomed. Mater. Res., 89B (2009), pp. 342–352.CrossRefGoogle Scholar
  34. 34.
    Z. Yang, D. Li, J. Han, J. Li, X. Li, Z. Li, and S. Li, Orthoped., 32(1) (2009), p. 27.CrossRefGoogle Scholar
  35. 35.
    E.J. Blom, J. Klein-Nulend, C.P.A.T. Klein, K. Kurashina, M.A.J. van Waas, and E.H. Burger, J. Biomed. Mater. Res., 50 (2000), pp. 67–74.CrossRefGoogle Scholar
  36. 36.
    M.D. Weir and H.H. Xu, J. Biomed. Mater. Res., 85A (2008), pp. 388–396.CrossRefGoogle Scholar
  37. 37.
    N. Ikawa, T. Kimura, Y. Oumi, and T. Sano, J. Mater. Chem., 19 (2009), p. 4906.CrossRefGoogle Scholar
  38. 38.
    H.P. Stallmann, R.D. Roo, C. Faber, A.V.N. Amerongen, and P.I. Wuisman, J. Orthop. Res., 26 (2008), pp. 531–538.CrossRefGoogle Scholar
  39. 39.
    H.P. Stallmann, J. Antimicrob. Chemother., 54 (2004), pp. 472–476.CrossRefGoogle Scholar
  40. 40.
    T. Niikura, K. Tsujimoto, S. Yoshiya, K. Tadokoro, M. Kurosaka, and R. Shiba, Orthoped., 30 (2007), p. 320.Google Scholar
  41. 41.
    R.A. Mickiewicz, A.M. Mayes, and D. Knaack, J. Biomed. Mater. Res., 61 (2002), pp. 581–592.CrossRefGoogle Scholar
  42. 42.
    R.M. Khashaba et al., Int. J. Biomater., 2010; Article 691452:1-14; doi:10.1155/2010/691452.Google Scholar
  43. 43.
    Y. Zhang, and M. Zhang, J. Biomed. Mater. Res., 62 (2002), pp. 378–386.CrossRefGoogle Scholar
  44. 44.
    A. Bigi, B. Bracci, and S. Panzavolta, Biomaterials, 25 (2004), pp. 2893–2899.CrossRefGoogle Scholar
  45. 45.
    S. Panzavolta, P. Torricelli, B. Bracci, M. Fini, and A. Bigi, J. Inorg. Biochem., 104 (2010), pp. 1099–1106.CrossRefGoogle Scholar
  46. 46.
    M.D. Weir and H.H. Xu, Acta Biomater., 6 (2010), pp. 4118–4126.CrossRefGoogle Scholar
  47. 47.
    M. Ginebra, T. Traykova, and J. Planell, J. Controlled Release, 113 (2006), pp. 102–110.CrossRefGoogle Scholar
  48. 48.
    Z. Amjad, Calcium Phosphates in Biological and Industrial Systems (New York: Springer, 1997).Google Scholar
  49. 49.
    W. Xue, A. Bandyopadhyay, and S. Bose, J. Biomed. Mater. Res. Part B: Appl. Biomater., 91 (2009), pp. 831–838.CrossRefGoogle Scholar
  50. 50.
    J. Darsell, S. Bose, H.L. Hosick, and A. Bandyopadhyay, J. Amer. Cer. Soc., 86(7) (2003), pp. 1076–1080.CrossRefGoogle Scholar
  51. 51.
    Y. Kuboki, H. Takita, D. Kobayashi, E. Tsuruga, M. Inoue, M. Murata, N. Nagai, Y. Dohi, and H. Ohgushi, J. Biomed. Mater. Res., 39 (1998), pp. 190–199.CrossRefGoogle Scholar
  52. 52.
    S. Bose, J. Darnell, M. Kinter, H.L. Hosick, and A. Bandyopadhyay, Mater. Sci. & Eng., 23 (2003), pp. 479–486.Google Scholar
  53. 53.
    S. Bose, S. Suguira, and A. Bandyopadhyay, Scripta Mater., 41 (1999), pp. 1009–1014.CrossRefGoogle Scholar
  54. 54.
    S. Yang, K. Leong, Z. Du, and C. Chua, Tissue Eng., 8 (2002), pp. 1–11.CrossRefGoogle Scholar
  55. 55.
    V. Karageorgiou and D. Kaplan, Biomaterials, 26 (2005), pp. 5474–5491.CrossRefGoogle Scholar
  56. 56.
    J. Guicheux, O. Gauthier, E. Aguado, P. Pilet, S. Couillaud, D. Jegou, G. Daculsi, and D. Heymann, J. Bone Miner. Res., 13 (1998), pp. 739–748.CrossRefGoogle Scholar
  57. 57.
    J.A. Koempel, B.S. Patt, K. O’Grady, J. Wozney, and D.M. Toriumi, J. Biomed. Mater. Res., 41 (1998), pp. 359–363.CrossRefGoogle Scholar
  58. 58.
    B. Kundu, C. Soundrapandian, S.K. Nandi, P. Mukherjee, N. Dandapat, S. Roy, B.K. Datta, T.K. Mandal, D. Basu, and R.N. Bhattacharya, Pharm. Res., 27 (2010), pp. 1659–1676.CrossRefGoogle Scholar
  59. 59.
    J.G. Dellinger, J.A.C. Eurell, and R.D. Jamison, J. Biomed. Mater. Res., 76A (2006, pp. 366–376.CrossRefGoogle Scholar
  60. 60.
    S.K. Lan Levengood, S.J. Polak, M.J. Poellmann, D.J. Hoelzle, A.J. Maki, S.G. Clark, M.B. Wheeler, and A.J. Wagoner Johnson, Acta Biomater., 6 (2010), pp. 3283–3291CrossRefGoogle Scholar

Copyright information

© TMS 2011

Authors and Affiliations

  • Susmita Bose
    • 1
  • Solaiman Tarafder
    • 1
  • Joe Edgington
    • 1
  • Amit Bandyopadhyay
    • 1
  1. 1.W.M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials EngineeringWashington State UniversityPullmanUSA

Personalised recommendations