, Volume 63, Issue 4, pp 83–92

Calcium phosphate scaffolds for bone repair

Biomaterials for Regenerative Medicine Overview


Calcium phosphates, with their chemical similarity to bone mineral, show biocompatibility with hard and soft tissues and offer massive potential for bone repair, both as scaffolds to be implanted directly into the defect and as structures for cell transplantation or to guide new bone growth in tissue engineering. This paper reviews the requirements and motivation for synthetic bone graft alternatives and the production routes for, particularly, hydroxyapatite porous scaffolds. It also considers the important role of substitution of ions such as silicate into calcium phosphates so as to more closely mirror the chemistry of bone mineral and to elicit specific biological responses.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Weiner and W. Traub, The FASEB Journal, 6 (1992), p. 879.Google Scholar
  2. 2.
    J.-Y. Rho, L. Kuhn-Spearing, and P. Zioupos, Medical Engineering & Physics, 20 (1998), p. 92.Google Scholar
  3. 3.
    W.J. Landis, Bone, 16 (1995), p. 533.Google Scholar
  4. 4.
    P. Fratzl, H.S. Gupta, E.P. Paschalis, and P. Roschger, J. Materials Chemistry, 14 (2004), p. 2115.Google Scholar
  5. 5.
    K.A. Hing, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 362 (2004), p. 2821.Google Scholar
  6. 6.
    P.V. Giannoudis, H. Dinopoulos, and E. Tsiridis, Injury, 36 (2005), p. S20.Google Scholar
  7. 7.
    K.A. Hing, S. Saeed, B. Annaz, T. Buckland, and P.A. Revell, Bioceramics, 16 (2004), p. 273.Google Scholar
  8. 8.
    F. Rahimi, B.T. Maurer, and M.G. Enzweiler, The Journal of Foot and Ankle Surgery, 36 (1997), p. 192.Google Scholar
  9. 9.
    R. Holmes and H. Hagler, J. Cranio-Maxillofacial Surgery, 16 (1988), p. 199.Google Scholar
  10. 10.
    R.B. Martin, M.W. Chapman, N.A. Sharkey, S.L. Zissimos, B. Bay, and E.G. Shors, Biomaterials, 14 (1993), p. 341.Google Scholar
  11. 11.
    W.R. Moore, S.E. Graves, and G.I. Bain, ANZ Journal of Surgery, 71 (2001), p. 354.Google Scholar
  12. 12.
    T.J. Blokhuis, M.F. Termaat, F.C. den Boer, P. Patka, F.C. Bakker, and H.J.T.M. Haarman, The Journal of Trauma: Injury, Infection and Critical Care, 48 (2000), p. 179.Google Scholar
  13. 13.
    C.G. Finkemeier, The Journal of Bone and Joint Surgery, 84-A (2002), p. 454.Google Scholar
  14. 14.
    P.J. VandeVord, S. Nasser, and P.H. Wooley, J. Orthopaedic Research, 23 (2005), p. 1059.Google Scholar
  15. 15.
    M.B. Nair, S. Suresh Babu, H.K. Varma, and A. John, Acta Biomaterialia, 4 (2008), p. 173.Google Scholar
  16. 16.
    G.M. Crane, S.L. Ishaug, and A.G. Mikos, Nature Medicine, 1 (1995), p. 1322.Google Scholar
  17. 17.
    H. Lui and T.J. Webster, Nanotechnology for the Regeneration of Hard and Soft Tissues, ed. T.J. Webster (Hackensack, NJ: World Scientific Publishing Co., 2007), pp. 1–52.Google Scholar
  18. 18.
    Q.Z. Chen, C.T. Wong, W.W. Lu, K.M.C. Cheung, J.C.Y. Leong, and K.D.K. Luk, Biomaterials, 25 (2004), p. 4243.Google Scholar
  19. 19.
    S. Kotani, Y. Fujita, T. Kitsugi, T. Nakamura, T. Yamamuro, C. Ohtsuki, and T. Kokubo, J. Biomedical Materials Research, 25 (1991), p. 1303.Google Scholar
  20. 20.
    M.J. Glimcher and H. Muir, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences (1934–1990), 304 (1984), p. 479.Google Scholar
  21. 21.
    C. Moseke and U. Gbureck, Acta Biomaterialia, 6 (2010), p. 3815.Google Scholar
  22. 22.
    K. Kurashina, H. Kurita, M. Hirano, A. Kotani, C.P.A.T. Klein, and K. de Groot, Biomaterials, 18 (1997), p. 539.Google Scholar
  23. 23.
    A.A. Mirtchi, J. Lemaitre, and N. Terao, Biomaterials, 10 (1989), p. 475.Google Scholar
  24. 24.
    M.I. Kay, R.A. Young, and A.S. Posner, Nature, 204 (1964), p. 1050.Google Scholar
  25. 25.
    S. Pramanik, A.K. Agarwal, K.N. Rai, and A. Garg, Ceramics International, 33 (2007), p. 419.Google Scholar
  26. 26.
    R.R. Rao and T.S. Kannan, Materials Science and Engineering C, 20 (2002), p. 187.Google Scholar
  27. 27.
    R.R. Rao, H.N. Roopa, and T.S. Kannan, J. Materials Science: Materials in Medicine, 8 (1997), p. 511.Google Scholar
  28. 28.
    Y.X. Pang and X. Bao, J. European Ceramic Society, 23 (2003), p. 1697.Google Scholar
  29. 29.
    Y.-M. Sung, J.-C. Lee, and J.-W. Yang, J. Crystal Growth, 262 (2004), p. 467.Google Scholar
  30. 30.
    R. Murugan and S. Ramakrishna, J. Crystal Growth, 274 (2005), p. 209.Google Scholar
  31. 31.
    R.N. Correia, M.C.F. Magalhães, P.A.A.P. Marques, and A.M.R. Senos, J. Materials Science: Materials in Medicine, 7 (1996), p. 501.Google Scholar
  32. 32.
    C. Kothapalli, M. Wei, A. Vasiliev, and M.T. Shaw, Acta Materialia, 52 (2004), p. 5655.Google Scholar
  33. 33.
    K. Donadel, M.C.M. Laranjeira, V.L. Gonçalves, V.T. Fávere, J.C. de Lima, and L.H.M. Prates, J. American Ceramics Society, 88 (2005) 2230.Google Scholar
  34. 34.
    A. Osaka, Y. Miura, K. Takeuchi, M. Asada. and K. Takahashi, J. Materials Science: Materials in Medicine, 2 (1991), p. 51.Google Scholar
  35. 35.
    E. Bouyer, F. Gitzhofer, and M.I. Boulos, J. Materials Science: Materials in Medicine, 11 (2000), p. 523.Google Scholar
  36. 36.
    N. Patel, I.R. Gibson, S. Ke, S.M. Best, and W. Bonfield, J. Materials Science: Materials in Medicine, 12 (2001), p. 181.Google Scholar
  37. 37.
    M. Pretto, A.L. Costa, E. Landi, A. Tampieri, and C. Galassi, J. American Ceramic Society, 86 (2003), p. 1534.Google Scholar
  38. 38.
    N.Y. Mostafa, Materials Chemistry and Physics, 94 (2005), p. 333.Google Scholar
  39. 39.
    I.R. Gibson and W. Bonfield, J. Biomedical Materials Research, 59 (2002), p. 697.Google Scholar
  40. 40.
    I.R. Gibson, S.M. Best, and W. Bonfield, J. Biomedical Materials Research, 44 (1999), p. 422.Google Scholar
  41. 41.
    T.A. Kuriakose, S.N. Kalkura, M. Palanichamy, D. Arivuoli, K. Dierks, G. Boceli, and C. Betzel, J. Crystal Growth, 263 (2004), p. 517.Google Scholar
  42. 42.
    I.-S. Kim and P.N. Kumta, Materials Science and Engineering B, 111 (2004), p. 232.Google Scholar
  43. 43.
    M. Yoshimura and K. Byrappa, J. Materials Science, 43 (2008), p. 2085.Google Scholar
  44. 44.
    H.S. Liu, T.S. Chin, L.S. Lai, S.Y. Chiu, K.H. Chung, C.S. Chang, and M.T. Lui, Ceramics International, 23 (1997), p. 19.Google Scholar
  45. 45.
    A.J. Wagoner Johnson and B.A. Herschler, Acta Biomaterialia, 7 (2011), p. 16.Google Scholar
  46. 46.
    L. Guo, M. Huang, and X. Zhang, J. Materials Science: Materials in Medicine, 14 (2003), p. 817.Google Scholar
  47. 47.
    A. Rapacz-Kmita, C. Paluszkiewicz, A. Slosarczyk, and Z. Paszkiewicz, J. Molecular Structure, 744–747 (2005), p. 653.Google Scholar
  48. 48.
    H. Newesely and J.F. Osborn, Mechanical Properties of Biomaterials, ed. G.W. Hastings and D.F. Williams (New York: Wiley, 1980), p. 457.Google Scholar
  49. 49.
    K.H. Prakash, R. Kumar, C.P. Ooi, P. Cheang, and K.A. Khor, Langmuir, 22 (2006), p. 11002.Google Scholar
  50. 50.
    A. Royer, J.C. Viguie, M. Heughebaert, and J.C. Heughebaert, J. Materials Science: Materials in Medicine, 4 (1993), p. 76.Google Scholar
  51. 51.
    F.H. Albee and H.F. Morrison, Annals of Surgery, 71 (1920), p. 32.Google Scholar
  52. 52.
    R.D. Ray, J. Degge, P. Gloyd, and G. Mooney, The Journal of Bone and Joint Surgery, 34 (1952), p. 638.Google Scholar
  53. 53.
    F.B. Bagambisa and U. Joos, Biomaterials, 11 (1990), p. 50.Google Scholar
  54. 54.
    S. Best, B. Sim, M. Kayser, and S. Downes, J. Materials Science: Materials in Medicine, 8 (1997), p. 97.Google Scholar
  55. 55.
    H.M. Kim, Current Opinion in Solid State and Materials Science, 7 (2003), p. 289.Google Scholar
  56. 56.
    S.A. Redey, S. Razzouk, C. Rey, D. Bernache-Assollant, G. Leroy, M. Nardin, and G. Cournot, J. Biomedical Materials Research, 45 (1999), p. 140.Google Scholar
  57. 57.
    K. Gomi, B. Lowenberg, G. Shapiro, and J.E. Davies, Biomaterials, 14 (1993), p. 91.Google Scholar
  58. 58.
    F. Monchau, A. Lefevre, M. Descamps, A. Belquinmyrdycz, P. Laffargue, and H.F. Hildebrand, Biomolecular Engineering, 19 (2002), p. 143.Google Scholar
  59. 59.
    S. Yamada, D. Heymann, J.M. Bouler, and G. Daculsi, Biomaterials, 18 (1997), p. 1037.Google Scholar
  60. 60.
    T.J. Webster, C. Ergun, R.H. Doremus, R.W. Siegel, and R. Bizios, Biomaterials, 22 (2001), p. 1327.Google Scholar
  61. 61.
    H. Yuan, K. Kurashina, J.D. de Bruijn, Y. Li, K. de-Groot, and X. Zhang, Biomaterials, 20 (1999), p. 1799.Google Scholar
  62. 62.
    B. Annaz, K.A. Hing, M. Kayser, T. Buckland, and L.D. Silvio, J. Microscopy, 215 (2004), p. 100.Google Scholar
  63. 63.
    R.Z. LeGeros, Hydroxyapatite and Related Compounds, ed. P.W. Brown and B. Constantz (Boca Raton, FL: CRC Press, 1993), p. 3.Google Scholar
  64. 64.
    J. Christoffersen, M.R. Christoffersen, N. Kolthoff, and O. Barenholdt, Bone, 20 (1997), p. 47.Google Scholar
  65. 65.
    B. Sutter, D.W. Ming, A. Clearfield, and L.R. Hossner, Soil Science Society of America Journal, 67 (2003), p. 1935.Google Scholar
  66. 66.
    L. Medvecky, R. Stulajterova, L. Parilak, J. Trpcevska, J. Durisin, and S.M. Barinov, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 281 (2006), p. 221.Google Scholar
  67. 67.
    M. Wakamura, K. Kandori, and T. Ishikawa, Polyhedron, 16 (1997), p. 2047.Google Scholar
  68. 68.
    T.J. Webster, E.A. Massa-Schlueter, J.L. Smith, and E.B. Slamovich, Biomaterials, 25 (2004), p. 2111.Google Scholar
  69. 69.
    E. Bonnelye, A. Chabadel, F. Saltel, and P. Jurdic, Bone, 42 (2008), p. 129.Google Scholar
  70. 70.
    C. Capuccini, P. Torricelli, F. Sima, E. Boanini, C. Ristoscu, B. Bracci, G. Socol, M. Fini, I.N. Mihailescu, and A. Bigi, Acta Biomaterialia, 4 (2008), p. 1885.Google Scholar
  71. 71.
    C. Capuccini, P. Torricelli, E. Boanini, M. Gazzano, R. Giardino, and A. Bigi, J. Biomedical Materials Research Part A, 89A (2009), p. 594.Google Scholar
  72. 72.
    Y. Yamada, A. Ito, H. Kojima, M. Sakane, S. Miyakawa, T. Uemura, and R.Z. LeGeros, J. Biomedical Materials Research Part A, 84A (2008), p. 344.Google Scholar
  73. 73.
    G. Montel, G. Bonel, J.C. Heughebaert, J.C. Trombe, and C. Rey, J. Crystal Growth, 53 (1981), p. 74.Google Scholar
  74. 74.
    A. Bigi, G. Cojazzi, S. Panzavolta, A. Ripamonti, N. Roveri, M. Romanello, K. Noris Suarez, and L. Moro, J. Inorganic Biochemistry, 68 (1997), p. 45.Google Scholar
  75. 75.
    E. Landi, G. Celotti, G. Logroscino, and A. Tampieri, J. European Ceramics Society, 23 (2003), p. 2931.Google Scholar
  76. 76.
    J. Barralet, J.C. Knowles, S. Best, and W. Bonfield, J. Materials Science: Materials in Medicine, 13 (2002), p. 529.Google Scholar
  77. 77.
    J.C. Merry, I.R. Gibson, S.M. Best, and W. Bonfield, J. Materials Science: Materials in Medicine, 9 (1998), p. 779.Google Scholar
  78. 78.
    R. Murugan and S. Ramakrishna, Acta Biomaterialia, 2 (2006), p. 201.Google Scholar
  79. 79.
    E.M. Carlisle, Science, 178 (1972), p. 619.Google Scholar
  80. 80.
    A.E. Porter, C.M. Botelho, M.A. Lopes, J.D. Santos, S.M. Best, and W. Bonfield, J. Biomedical Materials Research Part A, 69A (2004), p. 670.Google Scholar
  81. 81.
    A.E. Porter, N. Patel, J.N. Skepper, S.M. Best, and W. Bonfield, Biomaterials, 25 (2004), p. 3303.Google Scholar
  82. 82.
    L.J. Jha, S.M. Best, J.C. Knowles, I. Rehman, J.D. Santos, and W. Bonfield, J. Materials Science: Materials in Medicine, 8 (1997), p. 185.Google Scholar
  83. 83.
    M. Veiderma, K. Tõnsuaada, R. Knubovets, and M. Peld, J. Organometallic Chemistry, 690 (2005), p. 2638.Google Scholar
  84. 84.
    K.A. Hing, S. Saeed, B. Annaz, T. Buckland, and P.A. Revell, Trans. Annu. Meet. Orthop. Res. Soc., 29 (2004).Google Scholar
  85. 85.
    P. Frayssinet, J.L. Trouillet, N. Rouquet, E. Azimus, and A. Autefage, Biomaterials, 14 (1993), p. 423.Google Scholar
  86. 86.
    M. Descamps, J.C. Hornez, and A. Leriche, J. European Ceramic Society, 27 (2007), p. 2401.Google Scholar
  87. 87.
    A.M. Pietak, J.W. Reid, M.J. Stott, and M. Sayer, Biomaterials, 28 (2007), p. 4023.Google Scholar
  88. 88.
    T.J. Brunner, R.N. Grass, M. Bohner, and W.J. Stark, J. Materials Chemistry, 17 (2007), p. 4072.Google Scholar
  89. 89.
    R. LeGeros, Calcified Tissue International, 37 (1985), p. 194.Google Scholar
  90. 90.
    S. Kamakura, Y. Sasano, and O. Suzuki, International Congress Series, 1284 (2005), p. 290.Google Scholar
  91. 91.
    K.A. Hing, S.M. Best, K.E. Tanner, W. Bonfield, and P.A. Revell, J. Materials Science: Materials in Medicine, 10 (1999), p. 663.Google Scholar
  92. 92.
    H.R. Ramay and M. Zhang, Biomaterials, 24 (2003), p. 3293.Google Scholar
  93. 93.
    S.F. Hulbert, S.J. Morisson, and J.J. Klawitter, J. Biomedical Materials Research, 6 (1972), p. 347.Google Scholar
  94. 94.
    O. Gauthier, J.-M. Bouler, E. Aguado, P. Pilet, and G. Daculsi, Biomaterials, 19 (1998), p. 133.Google Scholar
  95. 95.
    J.X. Lu, B. Flautre, K. Anselme, P. Hardouin, A. Gallur, M. Descamps, and B. Thierry, J. Materials Science: Materials in Medicine, 10 (1999), p. 111.Google Scholar
  96. 96.
    K.A. Hing, S.M. Best, K.E. Tanner, W. Bonfield, and P.A. Revell, J. Biomedical Materials Research, 68 (2003), p. 188.Google Scholar
  97. 97.
    K.A. Hing, Int. J. Applied Ceramic Technology, 2 (2005), p. 184.Google Scholar
  98. 98.
    P. Sepulveda, A.H. Bressiani, J.C. Bressiani, L. Meseguer, and B. König, J. Biomedical Materials Research, 62 (2002), p. 587.Google Scholar
  99. 99.
    B.-S. Chang, C.-K. Lee, K.-S. Hong, H.-J. Youn, H.-S. Ryu, S.-S. Chung, and K.-W. Park, Biomaterials, 21 (2000), p. 1291.Google Scholar
  100. 100.
    J. Tian and J. Tian, J. Materials Science, 36 (2001), p. 3061.Google Scholar
  101. 101.
    A. Bignon, J. Chouteau, J. Chevalier, G. Fantozzi, J.P. Carret, P. Chavassieux, G. Boivin, M. Melin, and D. Hartmann, J. Materials Science: Materials in Medicine, 14 (2003), p. 1089.Google Scholar
  102. 102.
    S.J. Polak, S.K.L. Levengood, M.B. Wheeler, A.J. Maki, S.G. Clark, and A.J. Wagoner Johnson, Acta Biomaterialia, in press (2011).Google Scholar
  103. 103.
    W. Pompe, H. Worch, M. Epple, W. Friess, M. Gelinsky, P. Greil, D. Hempel, D. Scharnweber, and K. Schulte, Materials Science and Engineering A, 362 (2003), p. 40.Google Scholar
  104. 104.
    N.O. Engin and A.C. Tas, J. European Ceramics Society, 19 (1999), p. 2569.Google Scholar
  105. 105.
    D.-M. Liu, J. Materials Science: Materials in Medicine, 8 (1997), p. 227.Google Scholar
  106. 106.
    L.M. Rodríguez-Lorenzo and J.M.F. Ferreira, Materials Research Bulletin, 39 (2004), p. 83.Google Scholar
  107. 107.
    S.H. Li, J.R. deWijn, P. Layrolle, and K. deGroot, J. Biomedical Materials Research, 61 (2002), p. 109.Google Scholar
  108. 108.
    B. Ben-Nissan, Current Opinion in Solid State and Materials Science, 7 (2003), p. 283.Google Scholar
  109. 109.
    S. Jinawath, D. Polchai, and M. Yoshimura, Materials Science and Engineering C, 22 (2002), p. 35.Google Scholar
  110. 110.
    J.H.G. Rocha, A.F. Lemos, S. Agathopoulos, P. Valerio, S. Kannan, F.N. Oktar, and J.M.F. Ferreira, Bone, 37 (2005), p. 850.Google Scholar
  111. 111.
    R.W. Bucholz, A. Carlton, and R.E. Holmes, Orthopedic Clinics of North America, 18 (1987), p. 323.Google Scholar
  112. 112.
    P. Sepulveda and J.G.P. Binner, J. European Ceramic Society, 19 (1999), p. 2059.Google Scholar
  113. 113.
    S. Padilla, R. García-Carrodeguas, and M. Vallet-Rigi, J. European Ceramics Society, 24 (2004), p. 2223.Google Scholar
  114. 114.
    J. Luyten, I. Thijs, W. Vandermeulen, S. Mullens, B. Wallaeys, and R. Mortelmans, Advances in Applied Ceramics, 104 (2005), p. 4.Google Scholar
  115. 115.
    F.E.G. Ravault, “Production of Porous Ceramic Materials,” U.S. patent 4,004,933 (25 January 1977).Google Scholar
  116. 116.
    F. Heilmann, O. Standard, F. Müller, and M. Hoffman, J. Materials Science: Materials in Medicine, 18 (2007), p. 1817.Google Scholar
  117. 117.
    E. Saiz, L. Gremillard, G. Menendez, P. Miranda, K. Gryn, and A.P. Tomsia, Materials Science and Engineering: C, 27 (2007), p. 546.Google Scholar
  118. 118.
    Y.S. Dong, B. Liu, P.H. Lin, Q.G. Zhang, and Y.P. Pu, Advanced Biomaterials VI: Proceedings of the 6th Asian Symposium on Biomediucal Materials (Zurich, Switzerland: TransTech Publications, 2005), p. 565.Google Scholar
  119. 119.
    Y.U. Kim, M.C. Kim, K.N. Kim, K.M. Kim, S.H. Choi, C.K. Kim, R.Z. LeGeros, and Y.K. Lee, Bioceramics, 17 (2005), p. 313.Google Scholar
  120. 120.
    L.M. Rodríguez-Lorenzo, M. Vallet-Rigi, and J.M.F. Ferriera, Biomaterials, 22 (2001), p. 1847.Google Scholar
  121. 121.
    S. Bhattacharjee, S.K. Swain, D.K. Sengupta, and B.P. Singh, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 277 (2006), p. 164.Google Scholar
  122. 122.
    S. Guicciardi, C. Galassi, E. Landi, and A. Tampieri, J. Materials Research, 16 (2001), p. 163.Google Scholar
  123. 123.
    T.-M. G. Chu, J.W. Halloran, S.J. Hollister, and S.E. Feinberg, J. Materials Science: Materials in Medicine, 12 (2001), p. 471.Google Scholar
  124. 124.
    A. Woesz, M. Rumpler, J. Stampfl, F. Varga, N. Fratzl-Zelman, P. Roschger, K. Klaushofer, and P. Fratzl, Materials Science and Engineering C, 25 (2005), p. 181.Google Scholar
  125. 125.
    C.E. Wilson, J.D. de Bruijn, C.A. van Blitterswijk, A.J. Verbout, and W.J.A. Dhert, J. Biomedical Materials Research Part A, 68A (2004), p. 123.Google Scholar
  126. 126.
    J.A. Lewis, Current Opinion in Solid State and Materials Science, 6 (2002), p. 245.Google Scholar
  127. 127.
    S. Michna, W. Wu, and J.A. Lewis, Biomaterials, 26 (2005), p. 5632.Google Scholar
  128. 128.
    J.E. Block and M.R. Thorn, Calcified Tissue International, 66 (2000), p. 234.Google Scholar
  129. 129.
    K.A. Hing and W. Bonfield, “Foamed Ceramics,” U.S. patent application 2009/162,414 A1 (2009).Google Scholar
  130. 130.
    K.A. Hing, T. Buckland, and P. Moseley, Orthopaedic Product News (2003).Google Scholar
  131. 131.
    K.A. Hing, P.A. Revell, N. Smith, and T. Buckland, Biomaterials, 27 (2006), p. 5014.Google Scholar
  132. 132.
    L.G. Jenis and R.J. Banco, Clinical and Radiographic Evaluation of Silicate-substituted Calcium Phosphate Ceramic in Posterolateral Lumbar Spinal Fusion: Case Series (Deerfield, IL: Apatech, Baxter Healthcare Corp., 2008).Google Scholar
  133. 133.
    M.A. Hardenbrook and S.R. Lombardo, Neurosurgery Focus, 21 (2006), pp. 1–5.Google Scholar
  134. 134.
    R.H.B. Allard and J.G.N. Swart, J. Oral and Maxillofacial Surgery, 40 (1982), p. 237.Google Scholar
  135. 135.
    D.A. Cottrell and L.M. Wolford, J. Oral and Maxillofacial Surgery, 56 (1998), p. 935.Google Scholar
  136. 136.
    A. Balamurugan, A.H.S. Rebelo, A.F. Lemos, J.H.G. Rocha, J.M.G. Ventura, and J.M.F. Ferreira, Dental Materials, 24 (2008), p. 1374.Google Scholar
  137. 137.
    J. Jones, P. Lee, and L. Hench, Philosophical Transactions of the Royal Society of London A, 364 (2006), p. 263.Google Scholar
  138. 138.
    R. Quarto, M. Mastrogiacomo, R. Cancedda, S.M. Kutepov, V. Mukhachev, A. Lavroukov, E. Kon, and M. Marcacci, New England Journal of Medicine, 344 (2001), p. 385.Google Scholar
  139. 139.
    E. Erbe, J. Marx, T. Clineff, and L. Bellincampi, European Spine Journal, 10 (2001), p. S141.Google Scholar
  140. 140.
    E. Kon, A. Muraglia, A. Corsi, P. Bianco, M. Marcacci, I. Martin, A. Boyde, I. Ruspantini, P. Chistolini, M. Rocca, R. Giardino, R. Cancedda, and R. Quarto, J. Biomedical Materials Research, 49 (2000), p. 328.Google Scholar

Copyright information

© TMS 2011

Authors and Affiliations

  1. 1.Department of Materials Science and MetallurgyUniversity of CambridgeCambridgeUK

Personalised recommendations