JOM

, 63:66 | Cite as

Collagen scaffolds for orthopedic regenerative medicine

Biomaterials for Regenerative Medicine Overview

Abstract

Collagen and collagen-based scaffolds offer distinct advantages when selected as biomaterials for use across a broad spectrum of regenerative medicine applications. However, relatively poor mechanical properties are often perceived to limit their usefulness for orthopedic applications. These problems can be overcome through enhanced crosslinking mechanisms or through the addition of a second, stiffer phase such as hydroxyapatite, thus allowing tailored composite scaffolds to meet specific tissue requirements. This overview will highlight the current state of the art of these scaffolds, and consider the exciting prospects and future directions of collagen-based technologies for orthopedic regenerative medicine.

References

  1. 1.
    R. Langer and J.P. Vacanti, Science, 260(5110) (1993), pp. 920–926.Google Scholar
  2. 2.
    A. Atala et al., Lancet, 367(9518) (2006), pp. 1241–1246.Google Scholar
  3. 3.
    T. Dvir et al., Nat. Nano., 6(1) (2011), pp. 13–22.Google Scholar
  4. 4.
    F.J. O’Brien et al., Technol. Health Care, 15(1) (2007), pp. 3–17.Google Scholar
  5. 5.
    F.J. O’Brien et al., Biomaterials, 26(4) (2005), pp. 433–441.Google Scholar
  6. 6.
    D.W. Hutmacher, Biomaterials, 21(24) (2000), pp. 2529–2543.Google Scholar
  7. 7.
    B.A. Harley et al., Acta Biomater., 3(4) (2007), pp. 463–474.Google Scholar
  8. 8.
    C.M. Murphy et al., Biomaterials, 31(3) (2010), pp. 461–466.Google Scholar
  9. 9.
    K. Gelse et al., Adv. Drug Deliv. Rev., 55(12) (2003), pp. 1531–1546.Google Scholar
  10. 10.
    J.L. Chen et al., Biomaterials, 31(36) (2010), pp. 9438–9451.Google Scholar
  11. 11.
    Z. Ruszczak, Adv. Drug Deliv. Rev., 55(12) (2003), pp. 1595–1611.Google Scholar
  12. 12.
    Y.-B. Lee et al., Experimental Neurology, 223(2) (2010), pp. 645–652.Google Scholar
  13. 13.
    Z. Chen et al., Brain Research, 1368 (January 2011), pp. 71–81.Google Scholar
  14. 14.
    N. Davidenko et al., Acta Biomater., 6(10) (2010), pp. 3957–3968.Google Scholar
  15. 15.
    Y. Sumita et al., Biomaterials, 27(17) (2006), pp. 3238–3248.Google Scholar
  16. 16.
    Y. Zhang et al., Biochem. Biophys. Res. Comm., 344(1) (2006), pp. 362–369.Google Scholar
  17. 17.
    J. Riesle et al., J. Cell Biochem., 71(3) (1998), pp. 313–327.Google Scholar
  18. 18.
    T. Aigner and J. Stöve, Adv. Drug Deliv. Rev., 55(12) (2003), pp. 1569–1593.Google Scholar
  19. 19.
    I.V. Yannas and J.F. Burke, J. Biomed. Mater. Res., 14(1) (1980), pp. 65–81.Google Scholar
  20. 20.
    C.H. Lee et al., Int. J. Pharm., 221(1–2) (2001), pp. 1–22.Google Scholar
  21. 21.
    M. Geiger et al., Adv. Drug Deliv. Rev., 55(12) (2003), pp. 1613–1629.Google Scholar
  22. 22.
    W. Friess, Eur. J. Pharm. Biopharm., 45(2) (1998), pp. 113–136.Google Scholar
  23. 23.
    J.S. Pieper et al., Biomaterials, 20(9) (1999), pp. 847–858.Google Scholar
  24. 24.
    F.J. O’Brien et al., Biomaterials, 25(6) (2004), pp. 1077–1086.Google Scholar
  25. 25.
    S.P. Zhong et al., Mater. Sci. Eng. C, 27(2) (2007), pp. 262–266.Google Scholar
  26. 26.
    E. Sachlos et al., Biomaterials, 24(8) (2003), pp. 1487–1497.Google Scholar
  27. 27.
    E. Sachlos et al., Acta Biomater., 4(5) (2008), pp. 1322–1331.Google Scholar
  28. 28.
    S. Nade et al., Clin. Orthop. Relat. Res. (181) (1983), pp. 255–263.Google Scholar
  29. 29.
    H.W. Denissen et al., J. Biomed. Mater. Res., 14(6) (1980), pp. 713–721.Google Scholar
  30. 30.
    M.G. Haugh et al., J. Biomed. Mater. Res. A, 89A(2) (2009), pp. 363–369.Google Scholar
  31. 31.
    M.G. Haugh et al., Tissue Eng. Part A (17 January 2011), doi:10.1089/ten.tea.2010.0590.Google Scholar
  32. 32.
    K. Weadock et al., Biomater. Med. Devices Artif. Organs, 11(4) (1983), pp. 293–318.Google Scholar
  33. 33.
    M. Kikuchi et al., Biomaterials, 25(1) (2004), pp. 63–69.Google Scholar
  34. 34.
    E. Jorge-Herrero et al., Biomaterials, 20(6) (1999), pp. 539–545.Google Scholar
  35. 35.
    CR Lee et al., Biomaterials, 22(23) (2001), pp. 3145–3154.Google Scholar
  36. 36.
    R.-N. Chen et al., Biomaterials, 26(20) (2005), pp. 4229–4235.Google Scholar
  37. 37.
    D.Y.S. Chau et al., Biomaterials, 26(33) (2005), pp. 6518–6529.Google Scholar
  38. 38.
    G. Wollensak et al., Am. J. Ophthalmol., 135(5) (2003), pp. 620–627.Google Scholar
  39. 39.
    G. Wollensak and E. Spoerl, J. Cataract Refract. Surg., 30(3) (2004), pp. 689–695.Google Scholar
  40. 40.
    C.M. Dong et al., Biomaterials, 26(18) (2005), pp. 4041–4049.Google Scholar
  41. 41.
    S.D. Gorham et al., Int. J. Biol. Macromol., 14(3) (1992), pp. 129–138.Google Scholar
  42. 42.
    C.M. Tierney et al., J. Mech. Behav. Biomed. Mater., 2(2) (2009), pp. 202–209.Google Scholar
  43. 43.
    K.S. Weadock et al., J. Biomed. Mater. Res., 29(11) (1995), pp. 1373–1379.Google Scholar
  44. 44.
    L.H.H. Olde Damink et al., Biomaterials, 17(7) (1996), pp. 679–684.Google Scholar
  45. 45.
    J.S. Pieper et al., Biomaterials, 21(6) (2000), pp. 581–593.Google Scholar
  46. 46.
    H.M. Powell and S.T. Boyce, Biomaterials, 27(34) (2006), pp. 5821–5827.Google Scholar
  47. 47.
    G.C. Steffens et al., Tissue Eng., 10(9–10) (2004), pp. 1502–1509.Google Scholar
  48. 48.
    E. Marzec and K. Pietrucha, Biophys. Chem., 132(2–3) (2008), pp. 89–96.Google Scholar
  49. 49.
    D.M. Veríssimo et al., Acta Biomater., 6(10) (2010), pp. 4011–4018.Google Scholar
  50. 50.
    L. Ma et al., Biomaterials, 25(15) (2004), pp. 2997–3004.Google Scholar
  51. 51.
    B.A.C. Harley and L.J. Gibson, Chem. Eng. J., 137(1) (2008), pp. 102–121.Google Scholar
  52. 52.
    J.L.C. van Susante et al., Biomaterials, 22(17) (2001), pp. 2359–2369.Google Scholar
  53. 53.
    N.T. Dai et al., Biomaterials, 25(18) (2004), pp. 4263–4271.Google Scholar
  54. 54.
    A.G.A. Coombes et al., Biomaterials, 23(10) (2002), pp. 2113–2118.Google Scholar
  55. 55.
    W. He et al., Tissue Eng., 11(9–10) (2005), pp. 1574–1588.Google Scholar
  56. 56.
    A. Sosnik and M.V. Sefton, Biomaterials, 26(35) (2005), pp. 7425–7435.Google Scholar
  57. 57.
    T. Sato et al., Mater. Sci. Eng. C, 17(1–2) (2001), pp. 83–89.Google Scholar
  58. 58.
    J. Li et al., Acta Biomater., 6(6) (2010), pp. 2013–2019.Google Scholar
  59. 59.
    T. Sato et al., Mater. Sci. Eng. C, 24(3) (2004), pp. 365–372.Google Scholar
  60. 60.
    X. Li et al., Mater. Sci. Eng. C, 26(4) (2006), pp. 716–720.Google Scholar
  61. 61.
    W. Dai et al., Biomaterials, 31(8) (2010), pp. 2141–2152.Google Scholar
  62. 62.
    S. Liao et al., Biomaterials, 26(36) (2005), pp. 7564–7571.Google Scholar
  63. 63.
    J.F. Burke et al., Ann. Surg., 194(4) (1981), pp. 413–428.Google Scholar
  64. 64.
    E. Farrell et al., Tissue Eng., 12(3) (2006), pp. 459–468.Google Scholar
  65. 65.
    C. Tierney, M et al., J. Biomed. Mater. Res. A, 91A(1) (2009), pp. 92–101.Google Scholar
  66. 66.
    M.B. Keogh et al., Acta Biomater., 6(11) (2010), pp. 4305–4313.Google Scholar
  67. 67.
    J.S. Pieper et al., Biomaterials, 21(16) (2000), pp. 1689–1699.Google Scholar
  68. 68.
    C.M. Murphy and F.J. O’Brien, Cell Adh. Migr., 4(3) (2010), pp. 377–381.Google Scholar
  69. 69.
    R. Docherty et al., J. Cell Sci., 92(Pt 2) (1989), pp. 263–270.Google Scholar
  70. 70.
    D. Schulz Torres et al., Biomaterials, 21(15) (2000), pp. 1607–1619.Google Scholar
  71. 71.
    J.E. Lee et al., Biomaterials, 25(18) (2004), pp. 4163–4173.Google Scholar
  72. 72.
    J.K. Francis Suh, Biomaterials, 21(24) (2000), pp. 2589–2598.Google Scholar
  73. 73.
    M.N. Taravel and A Domard, Biomaterials, 17(4) (1996), pp. 451–455.Google Scholar
  74. 74.
    A.A. Al-Munajjed and F.J. O’Brien, J. Mech. Behav. Biomed. Mater., 2(2) (2009), pp. 138–146.Google Scholar
  75. 75.
    A.A. Al-Munajjed et al., J. Biomed. Mater. Res. B, 90B(2) (2009), pp. 584–591.Google Scholar
  76. 76.
    F.G. Lyons et al., Biomaterials, 31(35) (2010), pp. 9232–9243.Google Scholar
  77. 77.
    J.P. Gleeson et al., Eur. Cell Mater., 20 (2010), pp. 218–230.Google Scholar
  78. 78.
    X. Chen et al., J. Biomed. Eng., 25(5) (2008), pp. 1112–1115.Google Scholar
  79. 79.
    C. Zou et al., J. Biomed. Mater. Res. A, 87(1) (2008), pp. 38–44.Google Scholar
  80. 80.
    G. Cunniffe et al., J. Mater. Sci. Mater. Med., 21(8) (2010), pp. 2293–2298.Google Scholar
  81. 81.
    B. Marelli et al., Biomacromolecules, 11(6) (2010), pp. 1470–1479.Google Scholar
  82. 82.
    C. Xu et al., Biomaterials, 32(4) (2011), pp. 1051–1058.Google Scholar
  83. 83.
    P.V. Giannoudis et al., Injury, 36(3, Supplement 1) (2005), pp. S20–S27.Google Scholar
  84. 84.
    F. Jegoux et al., Arch. Otolaryngol. Head Neck Surg., 136(10) (2010), pp. 971–978.Google Scholar
  85. 85.
    J. Xie et al., J. Biomed. Mater. Res. A, 71(1) (2004), pp. 108–117.Google Scholar
  86. 86.
    J.I. Dawson et al., Biomaterials, 29(21) (2008), pp. 3105–3116.Google Scholar
  87. 87.
    G. Wei and P.X. Ma, Biomaterials, 25(19) (2004), pp. 4749–4757.Google Scholar
  88. 88.
    S.J. Heo et al., J. Biomed. Mater. Res. A, 89(1) (2009), pp. 108–116.Google Scholar
  89. 89.
    G.M. Cunniffe et al., J. Biomed. Mater. Res. A, 95(5) (2010), pp. 1142–1149.Google Scholar
  90. 90.
    C. Curtin et al., Transactions of 2011 Meeting of the Orthopaedic Research Society (Rosemont, IL: Orthopaedic Research Society, 2011), p. 1836.Google Scholar
  91. 91.
    Y.C. Chai et al., Tissue Eng. Part A, Epub ahead of print (2010).Google Scholar
  92. 92.
    L. Cheng et al., Acta Biomater., 6(4) (2010), pp. 1569–1574.Google Scholar
  93. 93.
    L. Lin et al., J. Biomed. Mater. Res. A, 89(2) (2009), pp. 326–335.Google Scholar
  94. 94.
    M.C. Meikle, Surgeon, 5(4) (2007), pp. 232–243.Google Scholar
  95. 95.
    L. Wang et al., Biomaterials, 31(36) (2010), pp. 9452–9461.Google Scholar
  96. 96.
    M.J. Jaasma et al., J. Biotechnol., 133(4) (2008), pp. 490–496.Google Scholar
  97. 97.
    C. Jungreuthmayer et al., Tissue Eng. Part A, 15(5) (2009), pp. 1141–1149.Google Scholar
  98. 98.
    S. Fuchs et al., Biomaterials, 30(7) (2009), pp. 1329–1338.Google Scholar
  99. 99.
    M. Lovett et al., Tissue Eng. Part B Rev., 15(3) (2009), pp. 353–370.Google Scholar
  100. 100.
    R.M. Nerem, Tissue Eng., 12(5) (2006), pp. 1143–1150.Google Scholar
  101. 101.
    O. Tsigkou et al., Proc. Nat’l. Acad. Sci. USA, 107(8) (2010), pp. 3311–3316.Google Scholar
  102. 102.
    G.P. Duffy et al., Eur. Cell Mater. (1) (2001), pp. 15–20.Google Scholar
  103. 103.
    P. Tayalia and D.J. Mooney, Adv Mater., 21(32–33) (2009), pp. 3269–3285.Google Scholar
  104. 104.
    Y.H. Shen et al., Acta Biomater., 4(3) (2008), pp. 477–489.Google Scholar
  105. 105.
    M.R. Urist et al., Proc. Nat’l. Acad. Sci. USA, 76(4) (1979), pp. 1828–1832.Google Scholar
  106. 106.
    J.M. Wozney and V. Rosen, Clin. Orthop. Relat. Res., 346 (1998), pp. 26–37.Google Scholar
  107. 107.
    J.H. Jang et al., Mol. Ther., 12(3) (2005), pp. 475–483.Google Scholar
  108. 108.
    R.M. Capito and M. Spector, Gene Ther., 14(9) (2007), pp. 721–732.Google Scholar
  109. 109.
    X.-D. Sun et al., Biomaterials, 30(6) (2009), pp. 1222–1231.Google Scholar
  110. 110.
    M.D. Kofron and C.T. Laurencin, Adv. Drug Deliv. Rev., 58(4) (2006), pp. 555–576.Google Scholar
  111. 111.
    M. Lind and C. Bünger, Int. Orthop., 29(4) (2005), pp. 205–209.Google Scholar
  112. 112.
    J. Bonadio, Adv. Drug Deliv. Rev., 44(2–3) (2000), pp. 185–194.Google Scholar
  113. 113.
    J.M. Dang and K.W. Leong, Adv. Drug Deliv. Rev., 58(4) (2006), pp. 487–499.Google Scholar
  114. 114.
    J. Bonadio et al., Nat. Med., 5(7) (1999), pp. 753–759.Google Scholar
  115. 115.
    J. Fang et al., Proc. Nat’l. Acad. Sci. USA, 93(12) (1996), pp. 5753–5758.Google Scholar
  116. 116.
    C. Holladay et al., J. Control Release, 136(3) (2009), pp. 220–225.Google Scholar
  117. 117.
    M. Endo et al., Tissue Eng., 12(3) (2006), pp. 489–497.Google Scholar
  118. 118.
    N.D. Zinder and J. Lederberg, J. Bacteriol., 64(5) (1952), pp. 679–699.Google Scholar
  119. 119.
    C.E. Thomas et al., Nat. Rev. Genet., 4(5) (2003), pp. 346–358.Google Scholar
  120. 120.
    R.N. Cohen et al., J. Control Release, 135(2) (2009), pp. 166–174.Google Scholar
  121. 121.
    C.E. Pedraza et al., Biomaterials, 29(23) (2008), pp. 3384–3392.Google Scholar
  122. 122.
    V. Sokolova and M. Epple, Angewandte Chemie International Edition, 47(8) (2008), pp. 1382–1395.Google Scholar
  123. 123.
    C.M. Curtin et al., Transactions of 2011 Meeting of the Orthopaedic Research Society(Rosemont, IL: Orthopaedic Research Society, 2011), p. 293.Google Scholar
  124. 124.
    E.S. Place et al., Nat. Mater., 8(6) (2009), pp. 457–470.Google Scholar
  125. 125.
    L. De Laporte and L.D. Shea, Adv. Drug Deliv. Rev., 59(4–5) (2007), pp. 292–307.Google Scholar
  126. 126.
    H. Cohen-Sacks et al., J. Control Release, 95(2) (2004), pp. 309–320.Google Scholar

Copyright information

© TMS 2011

Authors and Affiliations

  1. 1.Department of Mechanical and Manufacturing EngineeringRoyal College of Surgeons in IrelandDublin 2Ireland
  2. 2.Department of AnatomyRoyal College of Surgeons in IrelandDublin 2Ireland
  3. 3.Trinity Centre for BioengineeringTrinity CollegeDublin 2Ireland

Personalised recommendations