JOM

, Volume 63, Issue 4, pp 26–33

Microstructure-based description of the deformation of metals: Theory and application

  • Dirk Helm
  • Alexander Butz
  • Dierk Raabe
  • Peter Gumbsch
Enabling ICME Overview

Abstrac

Aiming for an integrated approach to computational materials engineering in an industrial context poses big challenges in the development of suitable materials descriptions for the different steps along the processing chain. The first key component is to correctly describe the microstructural changes during the thermal and mechanical processing of the base material into a semi-finished product. Explicit representations of the microstructure are most suitable there. The final processing steps and particularly component assessment then has to describe the entire component which requires homogenized continuum mechanical representations. A key challenge is the step in between, the determination of the (macroscopic) materials descriptions from microscopic structures. This article describes methods to include microstructure into descriptions of the deformation of metal, and demonstrates the central steps of the simulation along the processing chain of an automotive component manufactured from a dual phase steel.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Gumbsch, in Handbook of Materials Modeling, ed. S. Yip (Dordrecht, Netherlands: Springer Verlag, 2005), pp. 2713–2718.CrossRefGoogle Scholar
  2. 2.
    D. Raabe, F. Roters, F. Barlat, and L.-Q. Chen, editors, Continuum Scale Simulation of Engineering Materials: Fundamentals-Microstructures-Process Applications (Weinheim, Germany: Wiley-VCH, 2004).Google Scholar
  3. 3.
    G. Dehm, T.J. Balk, B. Von Blanckenhagen, P. Gumbsch, and E. Arzt, Zeitschrift für Metallkunde, 93 (2002), pp. 383–391.Google Scholar
  4. 4.
    B. Von Blanckenhagen, E. Arzt, and P. Gumbsch, Acta Materialia, 52 (2004), pp. 773–784.CrossRefGoogle Scholar
  5. 5.
    J. Senger, D. Weygand, P. Gumbsch, and O. Kraft, Scripta Materialia, 58 (2008), pp. 587–590.CrossRefGoogle Scholar
  6. 6.
    C. Motz, D. Weygand, J. Senger, and P. Gumbsch, Acta Materialia, 56 (2008), pp. 1942–1955.CrossRefGoogle Scholar
  7. 7.
    D. Raabe and F. Roters, Intern. J. Plast., 20 (2004), pp. 339–361.CrossRefGoogle Scholar
  8. 8.
    E. Kröner, Int. J. Solids and Structures, 38 (2001), pp. 1115–1134.CrossRefGoogle Scholar
  9. 9.
    T. Hochrainer, M. Zaiser, and P. Gumbsch, Philosophical Magazine, 87 (2007), pp. 1261–1282.CrossRefGoogle Scholar
  10. 10.
    S. Sandfeld, T. Hochrainer, P. Gumbsch, and M. Zaiser, Philosophical Magazine, 90 (2010), pp. 3697–3728.CrossRefGoogle Scholar
  11. 11.
    D. Raabe, P. Klose, B. Engl, K.-P. Imlau, F. Friedel, and F. Roters, Adv. Eng. Mater., 4 (2002), pp. 169–180.CrossRefGoogle Scholar
  12. 12.
    O. Engler and J. Hirsch, Mat. Sci. Eng. A, 336 (2002), pp. 249–262.CrossRefGoogle Scholar
  13. 13.
    L. Neumann, R. Kopp, A. Ludwig, M. Wu, A. Bührig-Polaczek, M. Schneider, M. Crumbach, and G. Gottstein, Mater. Sci. Eng., 12 (2004), pp. S19–S31.Google Scholar
  14. 14.
    N. Peranio, Y.J. Li, F. Roters, and D. Raabe, Mater. Sc. Eng. A, 527 (2010), pp. 4161–4168.CrossRefGoogle Scholar
  15. 15.
    R. Song, D. Ponge, D. Raabe, J.G. Speer, and D.K. Matlock, Mater. Sci. Eng. A, 441 (2006), pp. 1–17.CrossRefGoogle Scholar
  16. 16.
    P. Haupt, Continuum Mechanics and Theory of Materials (Berlin: Springer, 2002).Google Scholar
  17. 17.
    E. Kröner, “Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannungen,” Archive for Rational Mechanics and Analysis, 4 (1959), pp. 273–334.CrossRefGoogle Scholar
  18. 18.
    J. Mandel, “Plasticite Classique et Viscoplasticite,” CISM Course Vol. 97 (1971).Google Scholar
  19. 19.
    E. Lee and D. Liu, J. Applied Physics, 38 (1967), pp. 19–27.CrossRefGoogle Scholar
  20. 20.
    A. Staroselsky and L. Anand, Int. J. Plasticity, 19 (2003), pp. 1843–1864.CrossRefGoogle Scholar
  21. 21.
    S.R. Kalidindi, J. Mechanics and Physics of Solids, 46 (1998), pp. 267–271.CrossRefGoogle Scholar
  22. 22.
    A. Prakash, S.M. Weygand, and H. Riedel, Computational Materials Science, 45(3) (2009), pp. 744–750.CrossRefGoogle Scholar
  23. 23.
    F. Roters, P. Eisenlohr, L. Hantcherli, D.D. Tjahjanto, T.R. Bieler, and D. Raabe, Acta Mater., 58 (2010), pp. 1152–1211.CrossRefGoogle Scholar
  24. 24.
    S. Turteltaub and A.S.J. Suiker, J. Mechanics and Physics of Solids, 53 (2005), pp. 1747–1788.CrossRefGoogle Scholar
  25. 25.
    R.J. Asaro, in Advances in Applied Mechanics Volume 23, ed. John W. Hutchinson and Theodore Y. Wu (Amsterdam, the Netherlands: Elsevier, 1983), pp. 1–115.CrossRefGoogle Scholar
  26. 26.
    A. Ma, F. Roters, and D. Raabe, Acta Mater., 54 (2006), pp. 2169–2179.CrossRefGoogle Scholar
  27. 27.
    J. Lubliner, Plasticity Theory (New York: Macmillan Publishing, 1990).Google Scholar
  28. 28.
    J.R. Rice, J. Applied Mechanics, 37 (1970), pp. 728.CrossRefGoogle Scholar
  29. 29.
    G. Cailletaud, O. Diard, F. Feyel, and S. Forest, Technische Mechanik, 23 (2003), pp. 130–145.Google Scholar
  30. 30.
    J.W. Hutchinson, Proc. R. Soc. Lond. A, 10(348) (1976), pp. 101–127.Google Scholar
  31. 31.
    E. Voce, J. Inst. Met., 74 (1948), pp. 537–562.Google Scholar
  32. 32.
    J. Harder, Int. J. Plasticity, 15 (1999), pp. 605–624.CrossRefGoogle Scholar
  33. 33.
    M.E. Gurtin, J. Mechanics and Physics of Solids, 48 (2000), pp. 989–1036.CrossRefGoogle Scholar
  34. 34.
    A. Ma, F. Roters, and D. Raabe, Acta Mater., 54 (2006), pp. 2181–2194.CrossRefGoogle Scholar
  35. 35.
    Z. Zhao, M. Ramesh, D. Raabe, A. Cuitino, and R. Radovitzky, Int. J. Plast., 24 (2008), pp. 2278–2297.CrossRefGoogle Scholar
  36. 36.
    F. Siska, S. Forest, and P. Gumbsch, Computational Materials Science, 39 (2007), pp. 137–141.CrossRefGoogle Scholar
  37. 37.
    F. Siska, D. Weygand, S. Forest, and P. Gumbsch, Computational Materials Science, 45 (2009), pp. 793–799.CrossRefGoogle Scholar
  38. 38.
    T.R. Bieler, P. Eisenlohr, F. Roters, D. Kumar, D.E. Mason, M.A. Crimp, and D. Raabe, Int. J. Plast., 25 (2009), pp. 1655–1683.CrossRefGoogle Scholar
  39. 39.
    E. Demir and D. Raabe, Acta Mater., 58 (2010), pp. 6055–6063.CrossRefGoogle Scholar
  40. 40.
    T. Walde, P. Gumbsch, and H. Riedel, Steel Research International, 77 (2006), pp. 741–746.Google Scholar
  41. 41.
    D. Raabe, Z. Zhao, S.-J. Park, and F. Roters, Acta Mater., 50 (2002), pp. 421–440.CrossRefGoogle Scholar
  42. 42.
    A. Reuss, Z. Angew Math. Mech., 9 (1929), pp. 49–58.CrossRefGoogle Scholar
  43. 43.
    W. Voigt, Wied. Ann., 38 (1889), pp. 573–587.Google Scholar
  44. 44.
    G.L. Taylor, J. Inst. Met., 62 (1938), pp. 307–324.Google Scholar
  45. 45.
    T.H. Lin, J. Mechanics and Physics of Solids, 5 (1957), pp. 143–149.CrossRefGoogle Scholar
  46. 46.
    J.D. Eshelby, Proc. Roy. Soc. Lond. A, 241 (1957), pp. 376–396.CrossRefGoogle Scholar
  47. 47.
    E. Kröner, Z. Phys., 151 (1958), pp. 504–518.CrossRefGoogle Scholar
  48. 48.
    T. Mori and K. Tanaka, Acta Metall., 21 (1973), pp. 571–574.CrossRefGoogle Scholar
  49. 49.
    R.A. Lebensohn and C.N. Tomé, Acta Metall. et Mater., 41 (1993), pp. 2611–2624.CrossRefGoogle Scholar
  50. 50.
    A. Prakash, T. Hochrainer, E. Reisacher, and H. Riedel, Steel Research International, 79 (2008), pp. 645–652.Google Scholar
  51. 51.
    M. Rodriguez Ripoll, E. Reisacher, and H. Riedel, Computational Materials Science, 45 (2009), pp. 788–792.CrossRefGoogle Scholar
  52. 52.
    H. Wang, P.D. Wu, C.N. Tomé, and Y. Huang, J. Mechanics and Physics of Solids, 58 (2010), pp. 594–612.CrossRefGoogle Scholar
  53. 53.
    P. Van Houtte, L. Delannay, and I. Samajdar, Texture Microstruct., 31 (1999), pp. 109–149.CrossRefGoogle Scholar
  54. 54.
    P. Van Houtte, S. Li, M. Seefeldt, and L. Delannay, Int. J. Plast., 21 (2005), pp. 589–624.CrossRefGoogle Scholar
  55. 55.
    C. Schäfer, J. Song, and G. Gottstein, Acta Mater., 57 (2009), pp. 1026–1034.CrossRefGoogle Scholar
  56. 56.
    P. Eisenlohr, D.D. Tjahjanto, T. Hochrainer, F. Roters, and D. Raabe, Int. J. Materials Research, 100 (2009), pp. 500–509.Google Scholar
  57. 57.
    T. Walde and H. Riedel, Mater. Sci. and Eng. A, 443 (2007), pp. 277–284.CrossRefGoogle Scholar
  58. 58.
    I. Tikhovskiy, D. Raabe, and F. Roters, Mater. Sci. Eng. A, 488 (2008), pp. 482–490.CrossRefGoogle Scholar
  59. 59.
    D. Raabe, M. Sachtleber, Z. Zhao, F. Roters, and S. Zaefferer, Acta Mater., 49 (2001), pp. 3433–3441.CrossRefGoogle Scholar
  60. 60.
    A.J. Beaudoin, H. Mecking, and U.F. Kocks, Philos. Mag. A, 73 (1996), pp.1503–1517.CrossRefGoogle Scholar
  61. 61.
    M. Sachtleber, Z. Zhao, and D. Raabe, Mater. Sci. Eng. A, 336 (2002), pp. 81–87.CrossRefGoogle Scholar
  62. 62.
    J. Ocenasek, M. Rodriguez Ripoll, S.M. Weygand, and H. Riedel, Computational Materials Science, 39 (2007), pp. 23–28.CrossRefGoogle Scholar
  63. 63.
    R.A. Lebensohn, Acta Mater., 49 (2001), pp. 2723–2737.CrossRefGoogle Scholar
  64. 64.
    A. Prakash and R.A. Lebensohn, Model. Sim. Mater. Sci. Eng., 17 (2009), 064010.CrossRefGoogle Scholar
  65. 65.
    A. Butz, S. Lossau, B. Springub, and F. Roters, Int. J. Mater. Forming, 3(Suppl. 1) (2010), pp. 73–76.CrossRefGoogle Scholar
  66. 66.
    C. Yeong and S. Torquato, Phys. Rev. E, 57 (1998), pp. 495–506.CrossRefGoogle Scholar
  67. 67.
    D. Raabe, Ann. Rev. Mater. Res., 32 (2002), pp. 53–76.CrossRefGoogle Scholar
  68. 68.
    F. Barlat and J. Lian, Int. J. Plasticity, 5 (1989), pp. 51–56.CrossRefGoogle Scholar
  69. 69.
    S. Lossau and B. Svendsen, “Forming Simulations Based on Parameters Obtained in Microstructural Cold Rolling Simulations in Comparison to Conventional Forming Simulations” (Presented at the 7th LS-DYNA User Conference, Salzburg, Austria, 2009), C-I-01.Google Scholar
  70. 70.
    F. Feukamm, M. Feucht, A. Haufe, and K. Roll, Proc. 7th Int. Conf. Numerical Simulation of 3D Sheet Metal Forming Processes (Zurich Switzerland: ETH Zurich, Institute of Virtual Metallurgy, 2008), pp. 805–810.Google Scholar

Copyright information

© TMS 2011

Authors and Affiliations

  • Dirk Helm
    • 1
  • Alexander Butz
    • 1
  • Dierk Raabe
    • 2
  • Peter Gumbsch
    • 1
    • 3
  1. 1.Fraunhofer Institute for Mechanics of Materials IWMFreiburgGermany
  2. 2.Max-Planck-Institute for Iron ResearchDüsseldorfGermany
  3. 3.Institute for Applied Materials IAMKarlsruhe Institute of Technology KITKarlsruheGermany

Personalised recommendations