, Volume 63, Issue 4, pp 100–104 | Cite as

Design considerations for developing biodegradable and bioabsorbable magnesium implants

  • Harpreet S. Brar
  • Benjamin G. Keselowsky
  • Malisa Sarntinoranont
  • Michele V. Manuel
Biomedical Applications of Magnesium Overview


The integration of biodegradable and bioabsorbable magnesium implants into the human body is a complex undertaking that faces major challenges. Candidate biomaterials must meet both engineering and physiological requirements to ensure the desired properties. Historically, efforts have been focused on the behavior of commercial magnesium alloys in biological environments and their resultant effect on cell-mediated processes. Developing causal relationships between alloy chemistry and microstructure, and effects as a cellular behavior can be a difficult and time-intensive process. A systems design approach has the power to provide significant contributions in the development of the next generation of magnesium alloy implants with controlled degradability, biocompatibility, and optimized mechanical properties, at reduced time and cost. This approach couples experimental research with theory and mechanistic modeling for the accelerated development of materials. The aim of this article is to enumerate this strategy, design considerations, and hurdles for developing new cast magnesium alloys for use as biodegradable implant materials.


Amyotrophic Lateral Sclerosis Magnesium Alloy Pourbaix Diagram Advance Engineer Material Cast Magnesium Alloy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V.V. Troitskii and D.N. Tsitrin, Khirurgiia, 8 (1944), pp. 41–44.Google Scholar
  2. 2.
    A. Lambotte, Bull. Mem. Soc. Nat. Chir., 28 (1932), pp. 1325–1334.Google Scholar
  3. 3.
    F. Witte, Acta Biomaterialia, 6(5) (2010), pp. 1680–1692.CrossRefGoogle Scholar
  4. 4.
    M.P. Staiger et al., Biomaterials, 27(9) (2006), pp. 1728–1734.CrossRefGoogle Scholar
  5. 5.
    F. Witte et al., Biomaterials, 26(17) (2005), pp. 3557–3563.CrossRefGoogle Scholar
  6. 6.
    Y.C. Xin et al., J. Materials Research, 22(7) (2007), pp. 2004–2011.CrossRefGoogle Scholar
  7. 7.
    Z.J. Li et al., Biomaterials, 29(10) (2008), pp. 1329–1344.CrossRefGoogle Scholar
  8. 8.
    A.C. Hanzi et al., Acta Biomaterialia, 5(1) (2009), pp. 162–171.CrossRefGoogle Scholar
  9. 9.
    H.S. Brar et al., JOM, 61(9) (2009), pp. 31–34.CrossRefGoogle Scholar
  10. 10.
    B. Heublein et al., Heart, 89 (2003), pp. 651–656.CrossRefGoogle Scholar
  11. 11.
    M.B. Kannan and R.K.S. Raman, Biomaterials, 29(15) (2008), pp. 2306–2314.CrossRefGoogle Scholar
  12. 12.
    F. Witte et al., Current Opinion in Solid State & Materials Science, 12(5–6) (2008), pp. 63–72.CrossRefGoogle Scholar
  13. 13.
    L.P. Xu et al., J. Biomedical Materials Research Part A, 83A(3) (2007), pp. 703–711.CrossRefGoogle Scholar
  14. 14.
    E.L. Zhang et al., J. Biomedical Materials Research Part A, 90A(3) (2009), pp. 882–893.CrossRefGoogle Scholar
  15. 15.
    N. Hort et al., Acta Biomaterialia, 6(5) (2010), pp. 1714–1725.CrossRefGoogle Scholar
  16. 16.
    M.M. Avedesian, H. Baker, and ASM International Handbook Committee, Magnesium and Magnesium Alloys (Materials Park, OH: ASM International, 1999).Google Scholar
  17. 17.
    S.S.A. El-Rahman, Pharmacological Research, 47(3) (2003), pp. 189–194.CrossRefGoogle Scholar
  18. 18.
    T.D. Luckey and B. Venugopal, Metal Toxicity in Mammals (New York: Plenum Press, 1977).Google Scholar
  19. 19.
    Y. Nakamura et al., Fundamental and Applied Toxicology, 37(2) (1997), pp. 106–116.CrossRefGoogle Scholar
  20. 20.
    J.I. Post, J.K. Eibl, and G.M. Ross, Amyotrophic Lateral Sclerosis, 9(3) (2008), pp. 149–155.CrossRefGoogle Scholar
  21. 21.
    T.P. Flaten, Brain Research Bulletin, 55(2) (2001), pp. 187–196.CrossRefGoogle Scholar
  22. 22.
    S.G. Haines, The Complete Guide to Systems Thinking and Learning (Amherst, MA: HRD Press, 2000).Google Scholar
  23. 23.
    C.S. Smith, A Search for Structure: Selected Essays on Science, Art, and History(Cambridge, Mass.: MIT Press, 1981).Google Scholar
  24. 24.
    G.M. Jenkins, Systems Behaviour, ed. R.J. Beishon and G. Peters, (London, New York: Harper and Row [for] the Open University Press, 1972), pp. 56–79.Google Scholar
  25. 25.
    M.F. Ashby, Materials Selection in Mechanical Design. 3rd ed. (Amsterdam: Elsevier Butterworth-Heinemann, 2005).Google Scholar
  26. 26.
    D. Beyersmann, Toxicology Letters, 127(1–3) (2002), pp. 63–68.CrossRefGoogle Scholar
  27. 27.
    R.A. Bozym et al., Experimental Biology and Medicine, 235(6) (2010), pp. 741–750.CrossRefGoogle Scholar
  28. 28.
    V. Kumar and K.D. Gill, Archives of Toxicology, 83(11) (2009), pp. 965–978.CrossRefGoogle Scholar
  29. 29.
    J.P. Thyssen and T. Menne, Chemical Research in Toxicology, 23(2) (2010), pp. 309–318.Google Scholar
  30. 30.
    R.C. Zeng et al., Advanced Engineering Materials, 10(8) (2008), pp. B3–B14.CrossRefGoogle Scholar
  31. 31.
    M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions. 1st English ed. (Oxford, New York: Pergamon Press, 1966).Google Scholar
  32. 32.
    G. Song and A. Atrens, Advanced Engineering Materials, 9(3) (2007), pp. 177–183.CrossRefGoogle Scholar
  33. 33.
    G.L. Song and A. Atrens, Advanced Engineering Materials, 1(1) (1999), pp. 11–33.CrossRefGoogle Scholar
  34. 34.
    B. Zberg, P.J. Uggowitzer, and J.F. Loffler, Nature Materials, 8(11) (2009), pp. 887–891.CrossRefGoogle Scholar
  35. 35.
    E. Nembach, Particle Strengthening of Metals and Alloys (New York: Wiley, 1997).Google Scholar
  36. 36.
    C.H. Caceres and D.M. Rovera, J. Light Metals, 1 (2001), pp. 151–156.CrossRefGoogle Scholar
  37. 37.
    C.H. Caceres and A. Blake, Physica Status Solidi a-Applied Research, 194(1) (2002), pp. 147–158.CrossRefGoogle Scholar
  38. 38.
    C.R. Brooks, Heat Treatment, Structure and Properties of Nonferrous Alloys (Metals Park, OH: American Society for Metals, 1982).Google Scholar
  39. 39.
    V. Gerold and H. Haberkorn, Physica Status Solidi, 16(2) (1966), pp. 675–684.CrossRefGoogle Scholar
  40. 40.
    R.E. Reed-Hill and R. Abbaschian, Physical Metallurgy Principles, 3rd ed., The PWS-KENT Series in Engineering (Boston, MA: PWS-Kent Pub., 1994).Google Scholar
  41. 41.
    B. Sundman, B. Jansson, and J.O. Andersson, Calphad-Computer Coupling of Phase Diagrams and Thermochemistry, 9(2) (1985), pp. 153–190.Google Scholar
  42. 42.
    C. Bale et al., Calphad-Computer Coupling of Phase Diagrams and Thermochemistry, 26(2) (2002), pp. 189–228.Google Scholar
  43. 43.
    G. Eriksson and E. Konigsberger, Pure and Applied Chemistry, 80(6) (2008), pp. 1293–1302.CrossRefGoogle Scholar
  44. 44.
    N. Saunders et al., JOM, 55(12) (2003), pp. 60–65.CrossRefGoogle Scholar
  45. 45.
    S.L. Chen et al., Calphad-Computer Coupling of Phase Diagrams and Thermochemistry, 26(2) (2002), pp. 175–188.Google Scholar
  46. 46.
    W. Wu et al., Annals of Biomedical Engineering, 38(9) (2010), pp. 2829–2840.CrossRefGoogle Scholar
  47. 47.
    J.S. Soares, J.E. Moore, and K.R. Rajagopal, J. Medical Devices-Transactions of the ASME, 4(4) (2010), p. 10.Google Scholar
  48. 48.
    J.S. Soares, J.E. Moore, and K.R. Rajagopal, Asaio Journal, 54(3) (2008), pp. 295–301.CrossRefGoogle Scholar
  49. 49.
    D.L. McDowell and G.B. Olson, Scientific Modeling and Simulations, 15(1–3) (2008), pp. 207–240.CrossRefGoogle Scholar

Copyright information

© TMS 2011

Authors and Affiliations

  • Harpreet S. Brar
    • 1
  • Benjamin G. Keselowsky
    • 2
  • Malisa Sarntinoranont
    • 3
  • Michele V. Manuel
    • 1
  1. 1.Department of Materials Science and EngineeringUniversity of FloridaGainesvilleUSA
  2. 2.Department of Biomedical EngineeringUniversity of FloridaGainesvilleUSA
  3. 3.Department of Mechanical and Aerospace EngineeringUniversity of FloridaGainesvilleUSA

Personalised recommendations