, Volume 63, Issue 3, pp 45–51 | Cite as

Representation and computational structure-property relations of random media

  • D. L. McDowell
  • S. Ghosh
  • S. R. Kalidindi
Large Datasets in Materials Science, Part I Research Summary


Recent trends towards integrated computational materials engineering (ICME) demand increasing reliance on modeling and simulation to estimate microstructure-property relations of materials with random microstructures.


Direct Numerical Simulation Representative Volume Element High Cycle Fatigue High Order Moment Representative Volume Element Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T.M. Pollock and J. Allison, Integrated Computational Materials Engineering: A Transformational Discipline for Improved Competitiveness and National Security (Washington, D.C.: The National Academies Press, 2008).Google Scholar
  2. 2.
    D. Apelian, National Research Council Report: Accelerating Technology Transition: Bridging the Valley of Death for Materials and Processes in Defense Systems (Washington, D.C.: The National Academies Press, 2004).Google Scholar
  3. 3.
    T. Oden, T. Belytschko, J. Fishgokhale Dmicrostrucu, T.J.R. Hughes, C. Johnson, D. Keyes, A. Laub, L. Petzold, D. Srolovitz, and S. Yip, Simulation-Based Engineering Science: Revolutionizing Engineering Science through Simulation, Report of NSF Blue Ribbon Panel on Simulation-Based Engineering Science (May 2006) (accessed on 12/21/10),
  4. 4.
    D.L. McDowell, JOM, 59(9) (2007), pp. 21–25.CrossRefGoogle Scholar
  5. 5.
    D.L. McDowell and G.B. Olson, Scientific Modeling and Simulation (CMNS), 15(1) (2008), pp. 207–240.CrossRefGoogle Scholar
  6. 6.
    D.L. McDowell, J.H. Panchal, H.-J. Choi, C.C. Seepersad, J.K. Allen, and F. Mistree, Integrated Design of Multiscale, Multifunctional Materials and Products (Atlanta, GA: Elsevier, 2009).Google Scholar
  7. 7.
    S. Ghosh, J. Bai, and P. Raghavan, Mechanics of Materials, 39(3) (2007), pp. 241–266.CrossRefGoogle Scholar
  8. 8.
    R. Hill, J. Mechanics and Physics of Solids, 11 (1963), pp. 357–372.CrossRefGoogle Scholar
  9. 9.
    D.L. McDowell, Int. J. Plasticity, 26(9) (2010), pp. 1280–1309.CrossRefGoogle Scholar
  10. 10.
    M. Ostoja-Starzewski, Probabilistic Engineering Mechanics, 21 (2006), pp. 112–132.CrossRefGoogle Scholar
  11. 11.
    S. Torquato, Random Heterogeneous Materials (New York: Springer-Verlag, 2002).Google Scholar
  12. 12.
    H. Singh, A.M. Gokhale, Y. Mao, and J.E. Spowart, Acta Materialia, 54(8) (2006), pp. 2131–2143.CrossRefGoogle Scholar
  13. 13.
    J.R. Willis, Micromechanics and Inhomogeneity, The Toshio Mura Anniversary Volume, ed. G.J. Weng, M. Taya, and H. Abe (Berlin: Springer-Verlag, 1989), pp. 581–597.Google Scholar
  14. 14.
    T.E. Lacy, D.L. McDowell, and R. Talreja, Mechanics of Materials, 31 (1999), pp. 831–860.CrossRefGoogle Scholar
  15. 15.
    S. Ghosh, Micromechanical Analysis and Multiscale Modeling using the Voronoi Cell Finite Element Method (Boca Raton, FL: CRC Press/Taylor & Francis, 2011).Google Scholar
  16. 16.
    S. Swaminathan, S. Ghosh, and N.J. Pagano, J. Composite Materials, 40 (2006), pp. 583–604.CrossRefGoogle Scholar
  17. 17.
    S. Swaminathan and S. Ghosh, J. Composite Materials, 40 (2006), pp. 605–621.CrossRefGoogle Scholar
  18. 18.
    R. Pyrz, Composites Science and Technology, 50 (1994), pp. 197–208.CrossRefGoogle Scholar
  19. 19.
    J.E. Spowart, B. Mayurama, and D.B. Miracle, Materials Science and Engineering, A307 (2001), pp. 51–66.Google Scholar
  20. 20.
    Z. Shan and A.M. Gokhale, Int. J. Plasticity, 20 (2004), pp. 1347–1370.CrossRefGoogle Scholar
  21. 21.
    S. Ghosh, J. Bai, and D. Paquet, J. Mechanics and Physics of Solids, 57(7) (2009), pp. 1017–1044.CrossRefGoogle Scholar
  22. 22.
    D.T. Fullwood, S.R. Niezgoda, S.R. Kalidindi, and B.L. Adams, Progress in Materials Science, 55(6) (2010), pp. 477–562.CrossRefGoogle Scholar
  23. 23.
    S.R. Niezgoda and S.R. Kalidindi, Computers Materials & Continua, 14(2) (2009), pp. 79–97.Google Scholar
  24. 24.
    S.R. Niezgoda, D.M. Turner, D.T. Fullwood, and S.R. Kalidindi, Acta Materialia, 58 (2010), pp. 4432–4445.CrossRefGoogle Scholar
  25. 25.
    M.J. Beran, Statistical Continuum Theories (New York: Interscience Publishers, 1968).Google Scholar
  26. 26.
    J.R. Willis, Advances in Applied Mechanics, 21 (1981), pp. 1–78.CrossRefGoogle Scholar
  27. 27.
    D.T. Fullwood, S.R. Kalidindi, B.L. Adams, and S. Ahmadi, Computers Materials & Continua, 9(1) (2009), pp. 25–39.Google Scholar
  28. 28.
    G. Landi, S.R. Niezgoda, and S.R. Kalidindi, Acta Materialia, 58(7) (2010), pp. 2716–2725.CrossRefGoogle Scholar
  29. 29.
    S.R. Kalidindi, S.R. Niezgoda, G. Landi, S. Vachhani, and T. Fast, Computers, Materials & Continua, 395 (2010), pp. 1–23.Google Scholar
  30. 30.
    T. Kanit, S. Forest, L. Galliet, V. Mounoury, and D. Jeulin, Int. J. Solids and Structures, 40(13–14) (2003), pp. 3647–3679.CrossRefGoogle Scholar
  31. 31.
    D.L. McDowell, Materials Science and Engineering R: Reports, 62(3) (2008), pp. 67–123.CrossRefGoogle Scholar
  32. 32.
    C.P. Przybyla and D.L. McDowell, Int. J. Plasticity, 26(3) (2010), pp. 372–394.CrossRefGoogle Scholar

Copyright information

© TMS 2011

Authors and Affiliations

  • D. L. McDowell
    • 1
    • 2
  • S. Ghosh
    • 3
  • S. R. Kalidindi
    • 4
  1. 1.Woodruff School of Mechanical EngineeringGeorgiaUSA
  2. 2.School of Materials Science and EngineeringGeorgia Institute of Technology in AtlantaAtlantaUSA
  3. 3.Departments of Mechanical Engineering and Materials Science and EngineeringThe Ohio State University in ColumbusColumbusUSA
  4. 4.Departments of Mechanical Engineering and Mechanics and Materials Science and EngineeringDrexel University in PhiladelphiaPhiladelphiaUSA

Personalised recommendations