JOM

, Volume 62, Issue 12, pp 94–101

Solar-grade silicon production by metallothermic reduction

Overview Characterization of Next-Generation Materials

Abstract

Various types of processes for solargrade silicon (SOG-Si) production/purification have been developed with the aim of overcoming the low productivity of the Siemens process. These processes can be divided into three groups: decomposition and/or hydrogen reduction of silane gases by improving the currently used commercial processes; purification of metallurgical-grade silicon using metallurgical purification methods; and metallothermic reduction of silicon halides by metal reductants such as zinc and aluminum. This paper reviews the features of various SOG-Si production processes, particularly the processes based on metallothermic reduction, by classifying them according to the types of reductants and the silicon compounds used. Prospects for development of new processes for producing high-purity silicon are presented.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Schweickert, K. Reuschel, and H. Gutsche, “Production of High-purity Semiconductor Materials,” U.S. patent 3,011,877 (5 December 1961).Google Scholar
  2. 2.
    H. Gutsche, “Method for Producing Highest-purity Silicon for Electric Semiconductor Devices,” U.S. patent 3,042,494 (3 July 1962).Google Scholar
  3. 3.
    K. Yasuda, K. Morita, and T.H. Okabe, J. MMIJ, 126(4–5) (2010), pp. 115–123.Google Scholar
  4. 4.
    T. Uriu, Denki Kagaku, 34(4) (1966), pp. 298–308.Google Scholar
  5. 5.
    E. Spenke and W. Heywang, Phys. Stat. Sol. A, 64(1) (1981), pp. 11–44.CrossRefGoogle Scholar
  6. 6.
    J. Dietl, D. Helmreich, and E. Sirtl, Silicon/Crystals: Growth, Properties, and Applications (New York: Springer-Verlag, 1981), pp. 43–107.Google Scholar
  7. 7.
    J. Moriyama, Suiyokwai-Shi, 20(8) (1987), pp. 473–477.Google Scholar
  8. 8.
    J. Moriyama, Suiyokwai-Shi, 20(9) (1987), pp. 597–605.Google Scholar
  9. 9.
    J. Moriyama, Suiyokwai-Shi, 20(10) (1988), pp. 671–679.Google Scholar
  10. 10.
    J. Moriyama, Suiyokwai-Shi, 21(1) (1989), pp. 52–58.Google Scholar
  11. 11.
    J. Moriyama, Suiyokwai-Shi, 21(3) (1990), pp. 195–200.Google Scholar
  12. 12.
    W.C. O’Mara, R.B. Herring, and L.P. Hunt, editors, Handbook of Semiconductor Silicon Technology (Park Ridge: Noyes Publications, 1990).Google Scholar
  13. 13.
    Handotai Kiban Gijyutsu Kenkyukai, editors, Silicon no Kagaku (Chemistry of Silicon) (Tokyo: Realize Riko Center, 1992).Google Scholar
  14. 14.
    F. Habashi, editor, Handbook of Extractive Metallurgy (Weinheim: Wiley-VCH Publication, 1997), Vol. IV, Chap. 48, pp. 1861–1984.Google Scholar
  15. 15.
    M. Kuramoto, Kinzoku, 69(11) (1999), pp. 935–942.Google Scholar
  16. 16.
    P. Woditsch and W. Koch, Solar Ener. Mater. Solar Cells, 72(1–4) (2002), pp. 11–26.CrossRefGoogle Scholar
  17. 17.
    M. Takeshita, H. Ito, and Y. Hanaue, J. MMIJ, 123(12) (2007), pp. 704–706.CrossRefGoogle Scholar
  18. 18.
    K. Morita and T. Yoshikawa, Materia, 46(3) (2007), pp. 133–136.Google Scholar
  19. 19.
    Y. Tamaura et al., editors, Taiyo Energy Yuko Riyo Saizensen (Frontier of Effective Use of Solar Energy) (Tokyo: NTS Inc., 2008).Google Scholar
  20. 20.
    I. Barin, Thermochemical Data of Pure Substances, 3rd ed. (Weinheim: VCH, 1995).CrossRefGoogle Scholar
  21. 21.
    D.W. Lyon, C.M. Olson, and E.D. Lewis, J. Electrochem. Soc., 96(6) (1949), pp. 359–363.CrossRefGoogle Scholar
  22. 22.
    L. Bertrand, “Production of Silicon,” U.S. patent 3,012,862 (12 December 1961).Google Scholar
  23. 23.
    K.H. Butler and C.M. Olson, “Process for the Production of Pure Silicon in a Coarse Crystalline Form,” U.S. patent 2,773,745 (11 December 1956).Google Scholar
  24. 24.
    C.M. Olson, “Preparation of Pure Silicon,” U.S. patent 2,804,377 (27 August 1957).Google Scholar
  25. 25.
    E.R. Johnson and J.A. Amick, J. Appl. Phys., 25(9) (1954), pp. 1204–1205.CrossRefGoogle Scholar
  26. 26.
    T. Ishino and A. Matsumoto, Kogyo Kagaku Zasshi, 68(2) (1965), pp. 265–268.Google Scholar
  27. 27.
    J.M. Blocher Jr., M.F. Browning, and D.A. Seifert, “Evaluation of Selected Chemical Processes for Production of Low-cost Silicon,” DOE/JPL Report 954339-81/21 (31 March 1981).Google Scholar
  28. 28.
    D.A. Seifert and M.F. Browning, AIChE Symp. Ser., 78(216) (1982), pp. 104–115.Google Scholar
  29. 29.
    Y. Natsume, K. Kaneko, and T. Ogasawara, “Method for Producing High-purity Silicon,” Japanese patent application H11-92130 (6 April 1999).Google Scholar
  30. 30.
    T. Shimamune and I. Yoshikawa, “Method for Producing Polycrystalline Silicon,” Japanese patent application H15-342016 (3 December 2003).Google Scholar
  31. 31.
    E. Robert and T. Zijlema, “Process for the Production of Si by Reduction of SiCl4 with Liquid Zn,” PCT International patent WO2006/100114 (28 September 2006).Google Scholar
  32. 32.
    S. Honda, M. Yasueda, S. Hayashida, and M. Yamaguchi, “Process for the Production of High-purity Polycrystalline Silicon,” Japanese patent application H19-145663 (14 June 2007).Google Scholar
  33. 33.
    S. Sakaguchi, “Method and Apparatus for Producing Silicon,” PCT International patent WO2007/119605 (25 October 2007).Google Scholar
  34. 34.
    T.B. Massalski, H. Okamoto, P.R. Subramanian, and L. Kacprzak, editors, Binary Alloy Phase Diagrams, 2nd ed. (Metals Park, Ohio: ASM International, 1990).Google Scholar
  35. 35.
    Nihon Keizai Shimbun Newspaper, “Polycrystalline Si Production Business Started by Nippon Mining Holdings, Chisso, and Toho Titanium” (28 May 2008).Google Scholar
  36. 36.
    V.M. Weaver, “Process of Winning Metals,” U.S. patent 1,238,604 (28 August 1917).Google Scholar
  37. 37.
    S. Yoshizawa, T. Hatano, and S. Sakaguchi, Kogyo Kagaku Zasshi, 64(8) (1961), pp. 1347–1350.Google Scholar
  38. 38.
    J.C. Terry, A. Lippman, R.F. Sebenik, and H.G. Harris, “Reduction of Metallic Chloride by Powdered Metal,” Canadian patent 1,003,223 (11 January 1977).Google Scholar
  39. 39.
    P. Woditsch, M. Abels, and B. Brazel, “Process for the Production of Silicon,” U.S. patent 4,525,334 (25 June 1985).Google Scholar
  40. 40.
    K. Saegusa and T. Yamabayashi, “Method for Producing Highly Pure Silicon,” PCT International patent WO2007/001093 (4 January 2007).Google Scholar
  41. 41.
    T. Yoshikawa and K. Morita, Sci. Technol. Adv. Mater., 4(6) (2003), pp. 531–537.CrossRefGoogle Scholar
  42. 42.
    K. Morita, T.H. Okabe, and M. Maeda, Chuzo Kogaku (J. Jpn. Foundry Eng. Soc.), 80(6) (2008), pp. 375–379.Google Scholar
  43. 43.
    J.R. Davis, Jr., A. Rohatgi, R.H. Hopkins, P.D. Blais, P. Rai-Choudhury, J.R. McCormick, and H.C. Mollenkopf: IEEE Trans. Electron Devices, ED-27(4) (1980), pp. 677–687.CrossRefGoogle Scholar
  44. 44.
    N. Yuge, M. Abe, K. Hanazawa, H. Baba, N. Nakamura, Y. Kato, Y. Sakaguchi, S. Hiwasa, and F. Aratani, Prog. Photovolt. Res. Appl., 9 (2001), pp. 203–209.CrossRefGoogle Scholar
  45. 45.
    N. Yuge, K. Hanazawa, S. Hisawa, and Y. Kato, Nippon Kinzoku Gakkaishi, 67(10) (2003), pp. 575–582.Google Scholar
  46. 46.
    A.C. Vournasos, Z. Anorg. Chem., 81 (1913), pp. 364–368.CrossRefGoogle Scholar
  47. 47.
    R.S. Aries, “Production of Pure Silicon,” U.S. patent 3,041,145 (26 June 1962).Google Scholar
  48. 48.
    B. Kamenar and D. Grdenic, Z. Anorg Allg. Chem., 321 (1963), pp. 113–119.CrossRefGoogle Scholar
  49. 49.
    M.G. Fey, F.J. Harvey, and J. McDonald, “Arc Heater Production of Silicon Involving Alkali or Alkaline-earth Metals,” U.S. patent 4,102,765 (25 July 1978).Google Scholar
  50. 50.
    R.A. Frosch and A.R. Keeton, “Sodium Storage and Injection System,” U.S. patent 4,169,129 (25 September 1979).Google Scholar
  51. 51.
    R.A. Frosch, C.B. Wolf, and T.N. Meyer, “Method of Producing Silicon,” U.S. patent 4,188,368 (12 February 1980).Google Scholar
  52. 52.
    J. Eringer, “Process for Obtaining Silicon from Its Compounds,” U.S. patent 2,172,969 (12 September 1939).Google Scholar
  53. 53.
    A. Sanjurjo, L. Nanis, K. Sancier, R. Bartlett, and V. Kapur, J. Electrochem. Soc., 128(1) (1981), pp. 179–184.CrossRefGoogle Scholar
  54. 54.
    A. Sanjurjo, “Process and Apparatus for Obtaining Silicon from Fluosilicic Acid,” PCT international patent WO1983/002443 (21 July 1983).Google Scholar
  55. 55.
    F.A. Schmidt, D. Rehbein, and P. Chiotti, “Method of Preparing Silicon from Sodium Fluosilicate,” U.S. patent 4,446,120 (1 May 1984).Google Scholar
  56. 56.
    N. Auner, “Method for Producing Silicon,” PCT international patent WO2003/059814 (24 July 2003).Google Scholar
  57. 57.
    T. Watanabe, editor, Encyclopedia of the Elements (Tokyo: Asakura Publications, 2007).Google Scholar
  58. 58.
    H. Morito, T. Yamada, T. Ikeda, and H. Yamane, J. Alloy. Compd., 480(2) (2009), pp. 723–726.CrossRefGoogle Scholar
  59. 59.
    W.J. Kroll, Trans. Am. Electrochem. Soc., 78 (1940), pp. 35–47.Google Scholar
  60. 60.
    T.H. Okabe and K. Saegusa, “Method for Producing Silicon,” Japanese patent application H21-091228 (30 April 2009).Google Scholar
  61. 61.
    K. Yasuda, K. Saegusa, and T.H. Okabe, Mater. Trans., 50(12) (2009), pp. 2873–2878.CrossRefGoogle Scholar
  62. 62.
    K. Yasuda, K. Saegusa, and T.H. Okabe, Metall. Mater. Trans B., published on-line (15 Oct. 2010).Google Scholar

Copyright information

© TMS 2010

Authors and Affiliations

  1. 1.Institute of Industrial Sciencethe University of TokyoTokyoJapan
  2. 2.Osaka Titanium Technologies Co., Ltd.HyogoJapan

Personalised recommendations