JOM

, Volume 62, Issue 12, pp 90–93

Materials applications of photoelectron emission microscopy

  • G. Xiong
  • R. Shao
  • S. J. Peppernick
  • A. G. Joly
  • K. M. Beck
  • W. P. Hess
  • M. Cai
  • J. Duchene
  • J. Y. Wang
  • W. D. Wei
Overview Characterization of Next-Generation Materials

Abstract

Photoelectron emission microscopy (PEEM) is a versatile technique that can image a variety of materials including metals, semiconductors and even insulators. Under favorable conditions the most advanced aberration corrected instruments have a spatial resolution approaching 2 nm. Although PEEM cannot compete with transmission or scanning electron microscopies for ultimate resolution, the technique is much gentler and has the unique advantage of imaging structure as well as electronic and magnetic states on the nanoscale. Since the image contrast is derived from spatial variations in electron photoemission intensity, PEEM is ideal for interrogating both static and dynamic electronic properties of complex nanostructured materials. Here, we review the key principles and contrast mechanisms of PEEM and briefly summarize materials applications of PEEM.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Margaritondo, J. Electr. Spectr. Relat. Phenom., 178–179 (2010), pp. 273–291.CrossRefGoogle Scholar
  2. 2.
    A. Locatelli and E. Bauer, J. Phys.: Condens. Matter, 20 (2008), pp. 1–22 (CID 093002).CrossRefGoogle Scholar
  3. 3.
    O. Schmidt, M Bauer, C. Wiemann, R. Porath, M. Scharte, O. Andreyev, G. Schonhense, and M. Aeschlimann, Appl. Phys. B, 74 (2002), pp. 223–227.CrossRefGoogle Scholar
  4. 4.
    R. Konenkamp, R.C. Word, G.F. Rempfer, T. Dixon, L. Almaraz, and T. Jones, Ultramicroscopy, 110 (2010), pp. 899–902.CrossRefGoogle Scholar
  5. 5.
    T. Koshikawa, H. Shimizu, R. Amakawa, T. Ikuta, T. Yasue, and E. Bauer, J. Phys.: Condens. Matter, 17 (2005), pp. S1371–S1380.CrossRefGoogle Scholar
  6. 6.
    J. Feng, E. Forest, A.A. MacDowell, M. Marcus, H. Padmore, S. Raoux, D. Robin, A. Scholl, R. Schlueter, P. Schmid, J. Stohr, W. Wan, D.H. Wei, and Y. Wu, J. Phys.: Condens. Matter, 17 (2005), pp. S1339–S1350.CrossRefGoogle Scholar
  7. 7.
    V.W. Ballarotto, M. Breban, K. Siegrist, R.J. Phaneuf, and E.D. Williams, J. Vac. Sci. Technol. B. 20 (2002), pp. 2514–2518.CrossRefGoogle Scholar
  8. 8.
    H.H. Rotermund, Surf. Sci., 603 (2009), pp. 1662–1670.CrossRefGoogle Scholar
  9. 9.
    T. H. Kang, K. Ihm, C. C. Hwang, C. Jeon, K. J. Kim, J. Y. Kim, M. K. Lee, H. J. Shin, B. Kim, S. Chung, and C. Y. Park, Appl. Surf. Sci., 212–213 (2003) pp. 630–635.CrossRefGoogle Scholar
  10. 10.
    M. Hovorka, F. Mika, P. Mikulik, and L. Frank, Mater. Trans., 51 (2010), pp. 237–242.CrossRefGoogle Scholar
  11. 11.
    G.H. Fecher, O. Schmidt, Y. Hwu, and G. Schönhense, J. Electr. Spectr. Relat. Phenom., 126 (2002), pp. 77–87.CrossRefGoogle Scholar
  12. 12.
    F. Schedin, L. Leung, C.A. Muryn, E.W. Hill, A. Scholl, and G. Thornton, J. Appl. Phys., 95 (2004), pp. 7450–7452.CrossRefGoogle Scholar
  13. 13.
    PEEM research performed at the Advanced Light Source of the Lawrence Berkley National Laboratory, http://xraysweb.lbl.gov/peem2/PEEM2-02.html.
  14. 14.
    T.C. Leung, C.L. Kao, W.S. Su, Y.J. Feng, and C.T. Chan, Phys. Rev. B, 68 (2003), pp. 1–6 (CID 195408).CrossRefGoogle Scholar
  15. 15.
    W.C. Yang, B.J. Rodriquez, A. Gruverman, and R.J. Nemanich, J. Phys.: Condens. Matter, 17 (2005), pp. S1415–S1426.CrossRefGoogle Scholar
  16. 16.
    M. Cai, S.C. Langford, J.T. Dickinson, G. Xiong, T.C. Droubay, A.G. Joly, K.M. Beck, and W.P. Hess, J. Nucl. Mater., 361 (2007), pp. 306–312.CrossRefGoogle Scholar
  17. 17.
    W. Wei, S.L. Parker, Y.M. Sun, J.M. White, G. Xiong, A.G. Joly, K.M. Beck, and W.P. Hess, Appl. Phys. Lett, 90, (2007), pp. 1–3 (CID 111906).Google Scholar
  18. 18.
    M. Damayanti, T. Sritharan, S.G. Mhaisalkar and Z.H. Gan, Appl. Phys. Lett., 88 (2006), p. 044101.CrossRefGoogle Scholar
  19. 19.
    T.B. Massalski, Binary Alloy Phase Diagrams, ed. T.B. Massalski and H. Okamoto (Materials Park, OH: ASM International, 1990), p. 1467.Google Scholar
  20. 20.
    O. Chyan, T.N. Arunagiri, and T. Panuswamy, J. Electrochem. Soc., 150 (2003), pp. C347–C350.CrossRefGoogle Scholar
  21. 21.
    T.N. Arunagiri, Y. Zhang, O. Chyan, M.J. Kim, and T.Q. Hurd, J. Electrochem. Soc., 152 (2005), pp. G808–G812.CrossRefGoogle Scholar
  22. 22.
    NIST Standard Reference Database 71, (NIST: Gaithersburg, MD), www.nist.gov/ts/msd/srd/nist71.cfm.
  23. 23.
    A. Bottcher, B. Krenzer, H. Conrad and H. Niehus, Surf. Sci., 504 (2002), pp. 42–58.CrossRefGoogle Scholar
  24. 24.
    H.B. Michaelson, J. App. Phys., 48 (1977), pp. 4729–4733.CrossRefGoogle Scholar
  25. 25.
    C.B. Duke, W.R. Salaneck, T.J. Fabish, J.J. Ritsko, H.R. Thomas, and A. Paton, Phys. Rev. B, 18 (1978), pp. 5717–5739.CrossRefGoogle Scholar
  26. 26.
    C. Kittel, Introduction to Solid State Physics (New York: John Wiley and Sons, Inc., 1996), p. 562.Google Scholar
  27. 27.
    G. Lilienkamp, F. Lindla, C. Senft, and W. Daum, Surf. Sci., 602 (2008), pp. 2658–2665.CrossRefGoogle Scholar
  28. 28.
    G. Xiong, R. Shao, T.C. Droubay, A.G. Joly, K.M. Beck, S.A. Chambers, and W.P. Hess, Adv. Funct. Mater., 17, (2007), pp. 2133–2138.CrossRefGoogle Scholar
  29. 29.
    D. Bayer, C. Wiemann, O. Gaier, M. Bauer, and M. Aeschlimann, J. Nanomater. (2008), pp. 1–11 (CID 249514).Google Scholar
  30. 30.
    A. Kubo, K. Onda, H. Petek, Z. Sun, Y.S. Jung, and H.K. Kim, Nano Lett., 5 (2005), pp. 1123–1127.CrossRefGoogle Scholar
  31. 31.
    J. Lehmann, M. Merschdorf, W. Pfeiffer, A. Thon, S. Voll, and G. Gerber, Phys. Rev. Lett., 85 (2000), pp. 2921–2924.CrossRefGoogle Scholar
  32. 32.
    M. Bauer, C. Wiemann, J. Lange, D. Bayer, M. Rohmer, and M. Aeschlimann, Appl. Phys. A, 88 (2007), pp. 473–480.CrossRefGoogle Scholar
  33. 33.
    M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, S. Cunovic, F. Dimler, A. Fischer, W. Pfeiffer, M. Rohmer, C. Schneider, F. Steeb, C. Struber, and D.V. Voronine, Proc. Natl. Acad. Sci., 107 (2010), pp. 5329–5333.CrossRefGoogle Scholar
  34. 34.
    Y. Fang, N.H. Seong, and D.D. Dlott, Science, 321 (2008), pp. 388–392.CrossRefGoogle Scholar
  35. 35.
    K.A. Willets and R.P. Van Duyne, Annu. Rev. Phys. Chem., 58 (2007), pp. 267–297.CrossRefGoogle Scholar

Copyright information

© TMS 2010

Authors and Affiliations

  • G. Xiong
    • 1
  • R. Shao
    • 1
  • S. J. Peppernick
    • 1
  • A. G. Joly
    • 1
  • K. M. Beck
    • 1
  • W. P. Hess
    • 1
  • M. Cai
    • 3
  • J. Duchene
    • 5
  • J. Y. Wang
    • 5
  • W. D. Wei
    • 5
  1. 1.Pacific Northwest National LaboratoryRichlandUSA
  2. 2.First Solar Inc.PerrysburgUSA
  3. 3.Department of Physics and AstronomyWashington State UniversityPullmanUSA
  4. 4.Wyman-Gordon Forgings Inc.HoustonUSA
  5. 5.Department of ChemistryUniversity of FloridaGainesvilleUSA

Personalised recommendations