Advertisement

JOM

, Volume 62, Issue 11, pp 41–44 | Cite as

Alkaline sulfide pretreatment of an antimonial refractory Au-Ag ore for improved cyanidation

  • İbrahim Alp
  • Oktay Celep
  • Haci Deveci
Precious Metals Extraction / Research Summary

Abstract

This paper presents the alkaline sulfide pretreatment of an antimonial refractory gold and silver ore. In the ore, gold occurs mainly as gold-silver alloys and as associated with quartz and framboidal pyrite grains, and, to a small extent, as the inclusions within antimonial sulfides. Silver is present extensively as antimonial sulfides such as andorite. Alkaline sulfide pretreatment was shown to allow the decomposition of the antimonial sulfide minerals (up to 98% Sb removal) and to remarkably improve the amenability of gold (e.g., from <49% up to 83%) and silver (e.g., from <18% up to 90%) to subsequent cyanide leaching. An increase in reagent concentration (1–4 mol/L Na2S or NaOH) and temperature (20–80°C), and a decrease in particle size seem to produce an enhancing effect on metal extraction. These findings suggest that alkaline sulfide leaching can be suitably used as a chemical pretreatment method prior to the conventional cyanidation for antimonial refractory gold and silver ores.

Keywords

Pulp Density Stibnite Framboidal Pyrite Enargite Refractory Gold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.D. Adams, Advances in Gold Ore Processing. Developments in Mineral Processing 15 (Maryland Heights, MO: Elsevier, 2005).Google Scholar
  2. 2.
    J.P. Vaughan, JOM, 56(7) (2004), pp. 46–48.CrossRefGoogle Scholar
  3. 3.
    C.K. Gupta and T.K. Mukherjee, Hydrometallurgy in Extraction Processes, Vol. 1 (CRC Press, Boston, 1990).Google Scholar
  4. 4.
    S.R. La Brooy, H.G. Linge, and G.S. Walker, Minerals Engineering, 7(10) (1994), pp. 1213–1241.CrossRefGoogle Scholar
  5. 5.
    D. Venter, S.L. Chryssoulis, and T. Mulpeter, JOM, 56(8) (2004), pp. 53–56.CrossRefGoogle Scholar
  6. 6.
    P.G. Spry, S. Chryssoulis, and C.G. Ryan, JOM, 56(8) (2004), pp. 60–62.CrossRefGoogle Scholar
  7. 7.
    T.T. Chen, L.J. Cabri, and J.E. Dutrizac, JOM, 54(12) (2002), pp. 20–22.CrossRefADSGoogle Scholar
  8. 8.
    J.Y. Zhou and L.J. Cabri, JOM, 54(7) (2002), pp. 49–52.Google Scholar
  9. 9.
    M.N. Lehman, S.R. O’Leary, and J.G. Dunn, Minerals Engineering, 13(1) (2000), pp. 1–18.CrossRefGoogle Scholar
  10. 10.
    S. Ubaldini, F. Veglio, L. Toro, and C. Abbruzzesse, Int. J. Miner. Process, 52 (1997), pp. 65–80.CrossRefGoogle Scholar
  11. 11.
    I.J. Corrans and J.E. Angove, Minerals Engineering, 4(11) (1991), pp. 763–776.CrossRefGoogle Scholar
  12. 12.
    P. Baláž Extractive Metallurgy of Activated Minerals. (Maryland Heights, MO: Elsevier, 2000).Google Scholar
  13. 13.
    O. Celep, İ. Alp, H. Deveci, and M. Vicil, Trans. Nonferrous Met. Soc. China, 19 (2009), pp. 707–713.CrossRefGoogle Scholar
  14. 14.
    O. Celep and İ. Alp, The Journal of the Chamber of Mining Engineers of Turkey, 49(2) (2010), pp. 41–51.Google Scholar
  15. 15.
    O. Celep, İ. Alp, and H. Deveci, XXIV International Mineral Processing Congress (Brisbane, Australia, 2010, accepted paper).Google Scholar
  16. 16.
    P. Baláž, M. Achimovičová, J. Ficeriova, R. Kammel, and V. Sepelak, Hydrometallurgy, 47(2–3) (1998), pp. 297–307.CrossRefGoogle Scholar
  17. 17.
    P. Baláž, J. Ficeriova, and C.V. Leon, Hydrometallurgy, 70(1–3) (2003), pp. 113–119.CrossRefGoogle Scholar
  18. 18.
    S.A. Awe, C. Samuelsson, and A. Sandström, Hydrometallurgy, 103(1–4) (2010), pp. 167–172.CrossRefGoogle Scholar
  19. 19.
    S. Ubaldini, F. Veglio, P. Fornari, and C. Abbruzzesse, Hydrometallurgy, 57(3) (2000), pp. 187–199.CrossRefGoogle Scholar
  20. 20.
    P. BalážM. Achmovičová, Z. Bastl, T. Ohtani, and M. Sánchez, Hydrometallurgy, 54(2–3) (2000), pp. 205–216.Google Scholar
  21. 21.
    L. Curreli, C. Garbarino, M. Ghiani, and G. Orrù, Hydrometallurgy, 96(3) (2009), pp. 258–263.CrossRefGoogle Scholar
  22. 22.
    P. Baláž and M. Achimovičová, Hydrometallurgy, 84(1–2) (2006), pp. 60–68.Google Scholar
  23. 23.
    W. Tongamp, Y. Takasaki, and A. Shibayama, Hydrometallurgy, 101 (2010), pp. 64–68.CrossRefGoogle Scholar
  24. 24.
    W. Tongamp, Y. Takasaki, and A. Shibayama, Hydrometallurgy, 98(34) (2009), pp. 213–218.CrossRefGoogle Scholar
  25. 25.
    J. Ficeriová, P. Baláž, and E. Boldizarova, Int. J. Miner. Process., 76(4) (2005), pp. 260–265.CrossRefGoogle Scholar
  26. 26.
    O. Celep, İ. Alp, and H. Deveci, Hydrometallurgy, (2010) (under review).Google Scholar
  27. 27.
    E. Smincáková, JOM, 61(10) (2009), pp. 32–35.CrossRefGoogle Scholar
  28. 28.
    P. Baláž and M. Achimavičová Int. J. Miner. Process, 81 (2006), pp. 44–50.CrossRefGoogle Scholar
  29. 29.
    M.I. Jeffrey and C.G. Anderson, EJMP&EP, 3(3) (2003), pp. 336–343.Google Scholar
  30. 30.
    M.G. Alymore and D.M. Muir, Minerals Engineering, 14(2) (2001), pp. 135–174.CrossRefGoogle Scholar

Copyright information

© TMS 2010

Authors and Affiliations

  1. 1.the Mining Engineering DepartmentKaradeniz Technical UniversityTrabzonTurkey

Personalised recommendations